Skip to content

NightTrek/Ollama-mcp

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

6 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Ollama MCP Server

🚀 A powerful bridge between Ollama and the Model Context Protocol (MCP), enabling seamless integration of Ollama's local LLM capabilities into your MCP-powered applications.

🌟 Features

Complete Ollama Integration

  • Full API Coverage: Access all essential Ollama functionality through a clean MCP interface
  • OpenAI-Compatible Chat: Drop-in replacement for OpenAI's chat completion API
  • Local LLM Power: Run AI models locally with full control and privacy

Core Capabilities

  • 🔄 Model Management

    • Pull models from registries
    • Push models to registries
    • List available models
    • Create custom models from Modelfiles
    • Copy and remove models
  • 🤖 Model Execution

    • Run models with customizable prompts
    • Chat completion API with system/user/assistant roles
    • Configurable parameters (temperature, timeout)
    • Raw mode support for direct responses
  • 🛠 Server Control

    • Start and manage Ollama server
    • View detailed model information
    • Error handling and timeout management

🚀 Getting Started

Prerequisites

  • Ollama installed on your system
  • Node.js and npm/pnpm

Installation

  1. Install dependencies:
pnpm install
  1. Build the server:
pnpm run build

Configuration

Add the server to your MCP configuration:

For Claude Desktop:

MacOS: ~/Library/Application Support/Claude/claude_desktop_config.json Windows: %APPDATA%/Claude/claude_desktop_config.json

{
  "mcpServers": {
    "ollama": {
      "command": "node",
      "args": ["/path/to/ollama-server/build/index.js"],
      "env": {
        "OLLAMA_HOST": "http://127.0.0.1:11434"  // Optional: customize Ollama API endpoint
      }
    }
  }
}

🛠 Usage Examples

Pull and Run a Model

// Pull a model
await mcp.use_mcp_tool({
  server_name: "ollama",
  tool_name: "pull",
  arguments: {
    name: "llama2"
  }
});

// Run the model
await mcp.use_mcp_tool({
  server_name: "ollama",
  tool_name: "run",
  arguments: {
    name: "llama2",
    prompt: "Explain quantum computing in simple terms"
  }
});

Chat Completion (OpenAI-compatible)

await mcp.use_mcp_tool({
  server_name: "ollama",
  tool_name: "chat_completion",
  arguments: {
    model: "llama2",
    messages: [
      {
        role: "system",
        content: "You are a helpful assistant."
      },
      {
        role: "user",
        content: "What is the meaning of life?"
      }
    ],
    temperature: 0.7
  }
});

Create Custom Model

await mcp.use_mcp_tool({
  server_name: "ollama",
  tool_name: "create",
  arguments: {
    name: "custom-model",
    modelfile: "./path/to/Modelfile"
  }
});

🔧 Advanced Configuration

  • OLLAMA_HOST: Configure custom Ollama API endpoint (default: http://127.0.0.1:11434)
  • Timeout settings for model execution (default: 60 seconds)
  • Temperature control for response randomness (0-2 range)

🤝 Contributing

Contributions are welcome! Feel free to:

  • Report bugs
  • Suggest new features
  • Submit pull requests

📝 License

MIT License - feel free to use in your own projects!


Built with ❤️ for the MCP ecosystem

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published