Skip to content

Commit

Permalink
Merge pull request #2990 from shermanjasonaf/new-pyros-solver-log
Browse files Browse the repository at this point in the history
Update PyROS Solver Logging System
  • Loading branch information
mrmundt authored Nov 8, 2023
2 parents 2709a6d + 3e9f156 commit 670d8a1
Show file tree
Hide file tree
Showing 9 changed files with 2,236 additions and 310 deletions.
317 changes: 305 additions & 12 deletions doc/OnlineDocs/contributed_packages/pyros.rst

Large diffs are not rendered by default.

12 changes: 12 additions & 0 deletions pyomo/contrib/pyros/CHANGELOG.txt
Original file line number Diff line number Diff line change
Expand Up @@ -2,6 +2,18 @@
PyROS CHANGELOG
===============

-------------------------------------------------------------------------------
PyROS 1.2.8 12 Oct 2023
-------------------------------------------------------------------------------
- Refactor PyROS separation routine, fix scenario selection heuristic
- Add efficiency for discrete uncertainty set separation
- Fix coefficient matching routine
- Fix subproblem timers and time accumulators
- Update and document PyROS solver logging system
- Fix iteration overcounting in event of `max_iter` termination status
- Fixes to (assembly of) PyROS `ROSolveResults` object


-------------------------------------------------------------------------------
PyROS 1.2.7 26 Apr 2023
-------------------------------------------------------------------------------
Expand Down
183 changes: 158 additions & 25 deletions pyomo/contrib/pyros/master_problem_methods.py
Original file line number Diff line number Diff line change
Expand Up @@ -22,7 +22,6 @@
adjust_solver_time_settings,
revert_solver_max_time_adjustment,
get_main_elapsed_time,
output_logger,
)
from pyomo.contrib.pyros.solve_data import MasterProblemData, MasterResult
from pyomo.opt.results import check_optimal_termination
Expand Down Expand Up @@ -236,6 +235,13 @@ def solve_master_feasibility_problem(model_data, config):
"""
model = construct_master_feasibility_problem(model_data, config)

active_obj = next(model.component_data_objects(Objective, active=True))

config.progress_logger.debug("Solving master feasibility problem")
config.progress_logger.debug(
f" Initial objective (total slack): {value(active_obj)}"
)

if config.solve_master_globally:
solver = config.global_solver
else:
Expand All @@ -245,6 +251,7 @@ def solve_master_feasibility_problem(model_data, config):
orig_setting, custom_setting_present = adjust_solver_time_settings(
model_data.timing, solver, config
)
model_data.timing.start_timer("main.master_feasibility")
timer.tic(msg=None)
try:
results = solver.solve(model, tee=config.tee, load_solutions=False)
Expand All @@ -253,13 +260,14 @@ def solve_master_feasibility_problem(model_data, config):
# (such as segmentation faults, function evaluation
# errors, etc.)
config.progress_logger.error(
f"Solver {repr(solver)} encountered exception attempting to "
"optimize master feasibility problem in iteration "
f"{model_data.iteration}"
f"Optimizer {repr(solver)} encountered exception "
"attempting to solve master feasibility problem in iteration "
f"{model_data.iteration}."
)
raise
else:
setattr(results.solver, TIC_TOC_SOLVE_TIME_ATTR, timer.toc(msg=None))
model_data.timing.stop_timer("main.master_feasibility")
finally:
revert_solver_max_time_adjustment(
solver, orig_setting, custom_setting_present, config
Expand All @@ -273,6 +281,24 @@ def solve_master_feasibility_problem(model_data, config):
}
if results.solver.termination_condition in feasible_terminations:
model.solutions.load_from(results)
config.progress_logger.debug(
f" Final objective (total slack): {value(active_obj)}"
)
config.progress_logger.debug(
f" Termination condition: {results.solver.termination_condition}"
)
config.progress_logger.debug(
f" Solve time: {getattr(results.solver, TIC_TOC_SOLVE_TIME_ATTR)}s"
)
else:
config.progress_logger.warning(
"Could not successfully solve master feasibility problem "
f"of iteration {model_data.iteration} with primary subordinate "
f"{'global' if config.solve_master_globally else 'local'} solver "
"to acceptable level. "
f"Termination stats:\n{results.solver}\n"
"Maintaining unoptimized point for master problem initialization."
)

# load master feasibility point to master model
for master_var, feas_var in model_data.feasibility_problem_varmap:
Expand All @@ -298,6 +324,9 @@ def minimize_dr_vars(model_data, config):
-------
results : SolverResults
Subordinate solver results for the polishing problem.
polishing_successful : bool
True if polishing model was solved to acceptable level,
False otherwise.
"""
# config.progress_logger.info("Executing decision rule variable polishing solve.")
model = model_data.master_model
Expand Down Expand Up @@ -467,11 +496,21 @@ def minimize_dr_vars(model_data, config):
else:
solver = config.local_solver

config.progress_logger.debug("Solving DR polishing problem")

# NOTE: this objective evalaution may not be accurate, due
# to the current initialization scheme for the auxiliary
# variables. new initialization will be implemented in the
# near future.
polishing_obj = polishing_model.scenarios[0, 0].polishing_obj
config.progress_logger.debug(f" Initial DR norm: {value(polishing_obj)}")

# === Solve the polishing model
timer = TicTocTimer()
orig_setting, custom_setting_present = adjust_solver_time_settings(
model_data.timing, solver, config
)
model_data.timing.start_timer("main.dr_polishing")
timer.tic(msg=None)
try:
results = solver.solve(polishing_model, tee=config.tee, load_solutions=False)
Expand All @@ -484,16 +523,35 @@ def minimize_dr_vars(model_data, config):
raise
else:
setattr(results.solver, TIC_TOC_SOLVE_TIME_ATTR, timer.toc(msg=None))
model_data.timing.stop_timer("main.dr_polishing")
finally:
revert_solver_max_time_adjustment(
solver, orig_setting, custom_setting_present, config
)

# interested in the time and termination status for debugging
# purposes
config.progress_logger.debug(" Done solving DR polishing problem")
config.progress_logger.debug(
f" Solve time: {getattr(results.solver, TIC_TOC_SOLVE_TIME_ATTR)} s"
)
config.progress_logger.debug(
f" Termination status: {results.solver.termination_condition} "
)

# === Process solution by termination condition
acceptable = {tc.globallyOptimal, tc.optimal, tc.locallyOptimal, tc.feasible}
if results.solver.termination_condition not in acceptable:
# continue with "unpolished" master model solution
return results
config.progress_logger.warning(
"Could not successfully solve DR polishing problem "
f"of iteration {model_data.iteration} with primary subordinate "
f"{'global' if config.solve_master_globally else 'local'} solver "
"to acceptable level. "
f"Termination stats:\n{results.solver}\n"
"Maintaining unpolished master problem solution."
)
return results, False

# update master model second-stage, state, and decision rule
# variables to polishing model solution
Expand All @@ -520,7 +578,34 @@ def minimize_dr_vars(model_data, config):
for mvar, pvar in zip(master_dr.values(), polish_dr.values()):
mvar.set_value(value(pvar), skip_validation=True)

return results
config.progress_logger.debug(f" Optimized DR norm: {value(polishing_obj)}")
config.progress_logger.debug(" Polished Master objective:")

# print master solution
if config.objective_focus == ObjectiveType.worst_case:
worst_blk_idx = max(
model_data.master_model.scenarios.keys(),
key=lambda idx: value(
model_data.master_model.scenarios[idx].second_stage_objective
),
)
else:
worst_blk_idx = (0, 0)

# debugging: summarize objective breakdown
worst_master_blk = model_data.master_model.scenarios[worst_blk_idx]
config.progress_logger.debug(
" First-stage objective: " f"{value(worst_master_blk.first_stage_objective)}"
)
config.progress_logger.debug(
" Second-stage objective: " f"{value(worst_master_blk.second_stage_objective)}"
)
polished_master_obj = value(
worst_master_blk.first_stage_objective + worst_master_blk.second_stage_objective
)
config.progress_logger.debug(f" Objective: {polished_master_obj}")

return results, True


def add_p_robust_constraint(model_data, config):
Expand Down Expand Up @@ -628,18 +713,27 @@ def solver_call_master(model_data, config, solver, solve_data):
solver_term_cond_dict = {}

if config.solve_master_globally:
backup_solvers = deepcopy(config.backup_global_solvers)
solvers = [solver] + config.backup_global_solvers
else:
backup_solvers = deepcopy(config.backup_local_solvers)
backup_solvers.insert(0, solver)
solvers = [solver] + config.backup_local_solvers

higher_order_decision_rule_efficiency(config, model_data)

solve_mode = "global" if config.solve_master_globally else "local"
config.progress_logger.debug("Solving master problem")

timer = TicTocTimer()
for opt in backup_solvers:
for idx, opt in enumerate(solvers):
if idx > 0:
config.progress_logger.warning(
f"Invoking backup solver {opt!r} "
f"(solver {idx + 1} of {len(solvers)}) for "
f"master problem of iteration {model_data.iteration}."
)
orig_setting, custom_setting_present = adjust_solver_time_settings(
model_data.timing, opt, config
)
model_data.timing.start_timer("main.master")
timer.tic(msg=None)
try:
results = opt.solve(
Expand All @@ -653,12 +747,14 @@ def solver_call_master(model_data, config, solver, solve_data):
# (such as segmentation faults, function evaluation
# errors, etc.)
config.progress_logger.error(
f"Solver {repr(opt)} encountered exception attempting to "
f"optimize master problem in iteration {model_data.iteration}"
f"Optimizer {repr(opt)} ({idx + 1} of {len(solvers)}) "
"encountered exception attempting to "
f"solve master problem in iteration {model_data.iteration}"
)
raise
else:
setattr(results.solver, TIC_TOC_SOLVE_TIME_ATTR, timer.toc(msg=None))
model_data.timing.stop_timer("main.master")
finally:
revert_solver_max_time_adjustment(
solver, orig_setting, custom_setting_present, config
Expand Down Expand Up @@ -715,6 +811,25 @@ def solver_call_master(model_data, config, solver, solve_data):
nlp_model.scenarios[0, 0].first_stage_objective
)

# debugging: log breakdown of master objective
config.progress_logger.debug(" Optimized master objective breakdown:")
config.progress_logger.debug(
f" First-stage objective: {master_soln.first_stage_objective}"
)
config.progress_logger.debug(
f" Second-stage objective: {master_soln.second_stage_objective}"
)
master_obj = (
master_soln.first_stage_objective + master_soln.second_stage_objective
)
config.progress_logger.debug(f" Objective: {master_obj}")
config.progress_logger.debug(
f" Termination condition: {results.solver.termination_condition}"
)
config.progress_logger.debug(
f" Solve time: {getattr(results.solver, TIC_TOC_SOLVE_TIME_ATTR)}s"
)

master_soln.nominal_block = nlp_model.scenarios[0, 0]
master_soln.results = results
master_soln.master_model = nlp_model
Expand All @@ -731,7 +846,6 @@ def solver_call_master(model_data, config, solver, solve_data):
master_soln.pyros_termination_condition = (
pyrosTerminationCondition.time_out
)
output_logger(config=config, time_out=True, elapsed=elapsed)

if not try_backup:
return master_soln
Expand All @@ -742,8 +856,9 @@ def solver_call_master(model_data, config, solver, solve_data):
# NOTE: subproblem is written with variables set to their
# initial values (not the final subsolver iterate)
save_dir = config.subproblem_file_directory
serialization_msg = ""
if save_dir and config.keepfiles:
name = os.path.join(
output_problem_path = os.path.join(
save_dir,
(
config.uncertainty_set.type
Expand All @@ -754,15 +869,37 @@ def solver_call_master(model_data, config, solver, solve_data):
+ ".bar"
),
)
nlp_model.write(name, io_options={'symbolic_solver_labels': True})
output_logger(
config=config,
master_error=True,
status_dict=solver_term_cond_dict,
filename=name,
iteration=model_data.iteration,
nlp_model.write(
output_problem_path, io_options={'symbolic_solver_labels': True}
)
serialization_msg = (
" For debugging, problem has been serialized to the file "
f"{output_problem_path!r}."
)

deterministic_model_qual = (
" (i.e., the deterministic model)" if model_data.iteration == 0 else ""
)
deterministic_msg = (
(
" Please ensure your deterministic model "
f"is solvable by at least one of the subordinate {solve_mode} "
"optimizers provided."
)
if model_data.iteration == 0
else ""
)
master_soln.pyros_termination_condition = pyrosTerminationCondition.subsolver_error
config.progress_logger.warning(
f"Could not successfully solve master problem of iteration "
f"{model_data.iteration}{deterministic_model_qual} with any of the "
f"provided subordinate {solve_mode} optimizers. "
f"(Termination statuses: "
f"{[term_cond for term_cond in solver_term_cond_dict.values()]}.)"
f"{deterministic_msg}"
f"{serialization_msg}"
)

return master_soln


Expand Down Expand Up @@ -798,10 +935,6 @@ def solve_master(model_data, config):
None,
pyrosTerminationCondition.time_out,
)

# log time out message
output_logger(config=config, time_out=True, elapsed=elapsed)

return master_soln

solver = (
Expand Down
Loading

0 comments on commit 670d8a1

Please sign in to comment.