Skip to content

Conver Pytorch model to ONNX(float32) or Tflite(float32, int8)

Notifications You must be signed in to change notification settings

Roxbili/model-converter

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

13 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Model converter

Convert Pytorch model to onnx or tflite, and the converted model can be visualized by Netron

You can use this project to:

  1. Pytorch -> onnx (float32)
  2. Pytorch -> onnx -> tflite (float32)
  3. Pytorch -> onnx -> tflite (int8)

Requirements

torch2onnx

pytorch
onnx
opencv-python

torch2tflite

tensorflow ~= 2.5
torch == 1.8.1
tensorflow-addons ~= 0.15
opencv-python ~= 4.5.4
onnx ~= 1.10
onnx-tf ~= 1.9
numpy >= 1.19

(opencv-python is optional)

Usage

torch2onnx (float32)

from converter import Torch2onnxConverter

converter = Torch2onnxConverter(model_path, target_shape=(3,224,224))
converter.convert()

torch2tflite (float32)

from converter import Torch2TFLiteConverter

converter = Torch2TFLiteConverter(tmp_path, tflite_model_save_path='model_float32.lite', target_shape=(224,224,3))
converter.convert()

torch2tflite (int8)

import torch
from converter import Torch2TFLiteConverter

dataset = torch.rand(16,3,224,224, dtype=torch.float32)
def representative_dataset():
    for data in dataset:
        data = data.unsqueeze(0) # (1,3,224,224)
        yield [data]

converter = Torch2TFLiteConverter(tmp_path, tflite_model_save_path='model_int8.lite', target_shape=(224,224,3),
                                    representative_dataset=representative_dataset)
converter.convert()

More details can be found in Torch2onnxConverter and Torch2TfliteConverter __init__ method.

Note that target_shape is different for Pytorch and Tensorflow.

Example

  1. torch2onnx example

  2. torch2tflite example

References

About

Conver Pytorch model to ONNX(float32) or Tflite(float32, int8)

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published