This works for SALAMI v2.0 dataset.
Hyperparameters and configurations are in hparams.py
python feature_extraction.py KIND_DATA [--mode=MODE] [--num-workers=N]
KIND_DATA
can be'train'
or'test'
.MODE
can be'io'
,'in'
, or'out'
(means what feature will be processed). Default is'io'
.N
can be an integer from1
tocpu_count()
. Default iscpu_count() - 1
.
By match_salami_file_struct.py
, mp3 audio files and annotation text files are saved as SALAMI files.
python train_test.py [--test=EPOCH] [--(hyperparameter name)=(python script or str)]
python analyze_test.py EPOCH [--song={ID1, ID2, ...}]
ID1
,ID2
,... are song ids to be plotted in forms of mel and boundary.
- python >= 3.7 (or 3.6 with dataclasses backport)
- numpy
- matplotlib
- PyTorch >= 1.0
- tensorboardX >= 1.7
- librosa
- tqdm
- torchsummary
- mir_eval