Skip to content

UM-RMRS/pc-rasterize

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

60 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

PC Rasterize: Rasterize Point Clouds in Parallel


Installation

pc_rasterize can be installed using conda:

$ conda install -c conda-forge pc_rasterize

How to use:

import pc_rasterize as pcr
import glob

files = sorted(glob.glob("../data/points/*.laz"))
# Create a GeoBox grid specification with a 100m buffer around data
geobox = pcr.build_geobox(files, resolution=0.50, crs="5070", buffer=100)
# Build a lazy CHM raster
chm = pcr.rasterize(
    files,
    geobox,
    cell_func="max",
    # Set custom dask chunk-size
    chunksize=(500, 500),
    nodata=np.nan,
    # Filter out points over 100m
    pdal_filters=[
        {
            "type": "filters.expression",
            "expression": "Z < 100"
        }
    ],
)

Saving with default dask scheduling:

# Use rioxarray to save to disk
chm.rio.to_raster("points_chm.tiff", tiled=True)

Saving with dask's more advanced scheduling:

Dask's more advanced 'distributed' scheduling also provides a dashboard at http://localhost:8787/status for viewing progress in your browser.

from dask.distributed import Client, LocalCluster, Lock

with LocalCluster() as cluster, Client(cluster) as client:
    chm.rio.to_raster("points_chm.tiff", tiled=True, lock=Lock("rio"))

About

Rasterize point clouds in Python in parallel.

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages