diff --git a/.idea/.name b/.idea/.name new file mode 100644 index 0000000..a6d3d3c --- /dev/null +++ b/.idea/.name @@ -0,0 +1 @@ +Comparative_Genomics \ No newline at end of file diff --git a/.idea/Comparative_Genomics.iml b/.idea/Comparative_Genomics.iml new file mode 100644 index 0000000..d0876a7 --- /dev/null +++ b/.idea/Comparative_Genomics.iml @@ -0,0 +1,8 @@ + + + + + + + + \ No newline at end of file diff --git a/.idea/dictionaries/alipirani.xml b/.idea/dictionaries/alipirani.xml new file mode 100644 index 0000000..c56ec22 --- /dev/null +++ b/.idea/dictionaries/alipirani.xml @@ -0,0 +1,3 @@ + + + \ No newline at end of file diff --git a/.idea/encodings.xml b/.idea/encodings.xml new file mode 100644 index 0000000..d821048 --- /dev/null +++ b/.idea/encodings.xml @@ -0,0 +1,4 @@ + + + + \ No newline at end of file diff --git a/.idea/misc.xml b/.idea/misc.xml new file mode 100644 index 0000000..8662aa9 --- /dev/null +++ b/.idea/misc.xml @@ -0,0 +1,4 @@ + + + + \ No newline at end of file diff --git a/.idea/modules.xml b/.idea/modules.xml new file mode 100644 index 0000000..42bb7b7 --- /dev/null +++ b/.idea/modules.xml @@ -0,0 +1,8 @@ + + + + + + + + \ No newline at end of file diff --git a/.idea/scopes/scope_settings.xml b/.idea/scopes/scope_settings.xml new file mode 100644 index 0000000..922003b --- /dev/null +++ b/.idea/scopes/scope_settings.xml @@ -0,0 +1,5 @@ + + + + \ No newline at end of file diff --git a/.idea/vcs.xml b/.idea/vcs.xml new file mode 100644 index 0000000..94a25f7 --- /dev/null +++ b/.idea/vcs.xml @@ -0,0 +1,6 @@ + + + + + + \ No newline at end of file diff --git a/.idea/workspace.xml b/.idea/workspace.xml new file mode 100644 index 0000000..2e49adc --- /dev/null +++ b/.idea/workspace.xml @@ -0,0 +1,585 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + 1519313808309 + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + \ No newline at end of file diff --git a/Micro612_pre-course_hw/Micro612_w18_pre-course_hw.pdf b/Micro612_pre-course_hw/Micro612_w18_pre-course_hw.pdf new file mode 100644 index 0000000..039980b Binary files /dev/null and b/Micro612_pre-course_hw/Micro612_w18_pre-course_hw.pdf differ diff --git a/README.md b/README.md index eed26a3..3e09a9f 100644 --- a/README.md +++ b/README.md @@ -1,23 +1,36 @@ -# Bacterial Comparative Genomics Workshop +Microbial Comparative Genomics Workshop +======================================= -#### A 3 day microbial bioinformatics workshop conducted by [Dr. Evan Snitkin](http://thesnitkinlab.com/index.php) at [University of Michigan](https://www.umich.edu/). This module covers the basics of microbial genomic analysis using publicly available tools that are commonly referenced in genomics literature. Students will learn the steps and associated tools that are required to process, annotate and compare microbial genomes. - -#### Date: 15 - 17 March +***A 3 day microbial bioinformatics workshop conducted by [Dr. Evan Snitkin](http://thesnitkinlab.com/index.php) at [University of Michigan](https://www.umich.edu/). This module covers the basics of microbial genomic analysis using publicly available tools that are commonly referenced in genomics literature. Students will learn the steps and associated tools that are required to process, annotate and compare microbial genomes.*** +***Date: Feb 28 - 2 March 2018*** +*** + + +Prerequisites +------------- +- Prior participation in a [Software Carpentry Workshop](https://umswc.github.io/2018-02-26-UMich/) *** -#### Prerequisites: -- Prior participation in a [Software Carpentry Workshop](https://umswc.github.io/2017-01-17-UMich/) -- [Micro612 pre-course hw](https://github.com/alipirani88/Comparative_Genomics/blob/master/Micro612_pre-course_hw/Micro612_w17_pre-course_hw.pdf): A pre-course homework will help setting up Micro612 flux directories and bash profile, familiarize with basic unix/shell scripting and R commands. + +Link +---- + +GOTO: http://comparative-genomics.readthedocs.io/en/latest/index.html# *** -#### Workshop: +Workshop +-------- [Day 1 Morning](https://github.com/alipirani88/Comparative_Genomics/blob/master/day1_morning/README.md) *** +- [Installing and setting up Cyberduck for file transfer](https://github.com/alipirani88/Comparative_Genomics/blob/master/day1_morning/README.md#installing-and-setting-up-cyberduck-for-file-transfer) - [Getting your data onto Flux and setting up Environment variable](https://github.com/alipirani88/Comparative_Genomics/blob/master/day1_morning/README.md#getting-your-data-onto-glux-and-setting-up-environment-variable) - [Unix is your friend](https://github.com/alipirani88/Comparative_Genomics/blob/master/day1_morning/README.md#unix-is-your-friend) - [Quality Control using FastQC](https://github.com/alipirani88/Comparative_Genomics/blob/master/day1_morning/README.md#quality-control-using-fastqc) @@ -28,6 +41,7 @@ http://pad.software-carpentry.org/micro612_bacterial_genomics_workshop - [Read Mapping](https://github.com/alipirani88/Comparative_Genomics/blob/master/day1_afternoon/README.md#read-mapping) - [Variant Calling](https://github.com/alipirani88/Comparative_Genomics/blob/master/day1_afternoon/README.md#variant-calling-and-filteration) - [Visualize BAM/VCF files in Artemis](https://github.com/alipirani88/Comparative_Genomics/blob/master/day1_afternoon/README.md#visualize-bam-and-vcf-files-in-artemis) +- [VRE variant calling analysis](https://github.com/alipirani88/Comparative_Genomics/blob/master/day1_afternoon/README.md#vre-variant-calling-analysis) [Day 2 Morning](https://github.com/alipirani88/Comparative_Genomics/blob/master/day2_morning/README.md#day-2-morning) *** @@ -40,9 +54,8 @@ http://pad.software-carpentry.org/micro612_bacterial_genomics_workshop [Day 2 Afternoon](https://github.com/alipirani88/Comparative_Genomics/blob/master/day2_afternoon/README.md#day-2-afternoon) *** - [Determine which genomes contain beta-lactamase genes](https://github.com/alipirani88/Comparative_Genomics/blob/master/day2_afternoon/README.md#determine-which-genomes-contain-beta-lactamase-genes) -- [Identification of antibiotic resistance genes with LS-BSR and the ARDB database](https://github.com/alipirani88/Comparative_Genomics/blob/master/day2_afternoon/README.md#identification-of-antibiotic-resistance-genes-with-ls-bsr-and-the-ardb-database) -- [Perform pan-genome analysis with LS-BSR](https://github.com/alipirani88/Comparative_Genomics/blob/master/day2_afternoon/README.md#perform-pan-genome-analysis-with-ls-bsr) -- [Perform genome comparisons with ACT](https://github.com/alipirani88/Comparative_Genomics/blob/master/day2_afternoon/README.md#perform-genome-comparisons-with-act) +- [Identification of antibiotic resistance genes with ARIBA directly from paired-end reads](https://github.com/alipirani88/Comparative_Genomics/blob/master/day2_afternoon/README.md#identification-of-antibiotic-resistance-genes-with-ariba-directly-from-paired-end-reads) +- [Perform pan-genome analysis with Roary](https://github.com/alipirani88/Comparative_Genomics/blob/master/day2_afternoon/README.md#perform-pan-genome-analysis-with-roary) [Day 3 Morning](https://github.com/alipirani88/Comparative_Genomics/blob/master/day3_morning/README.md#day-3-morning) *** @@ -60,7 +73,7 @@ http://pad.software-carpentry.org/micro612_bacterial_genomics_workshop - [Phylogenetic tree annotation and visualization](https://github.com/alipirani88/Comparative_Genomics/blob/master/day3_afternoon/README.md#phylogenetic-tree-annotation-and-visualization) - [Assessment of genomic deletions](https://github.com/alipirani88/Comparative_Genomics/blob/master/day3_afternoon/README.md#assessment-of-genomic-deletions) -- [Helpful resources for microbial genomics](https://github.com/alipirani88/Comparative_Genomics/blob/master/online_resources/README.md#helpful-resources-for-microbial-genomics) -*** + +[Helpful resources for microbial genomics](https://github.com/alipirani88/Comparative_Genomics/blob/master/online_resources/README.md#helpful-resources-for-microbial-genomics) *** diff --git a/_img/day1_after/1.png b/_img/day1_after/1_1.png similarity index 100% rename from _img/day1_after/1.png rename to _img/day1_after/1_1.png diff --git a/_img/day1_after/HET_variant.png b/_img/day1_after/HET_variant.png new file mode 100644 index 0000000..284955f Binary files /dev/null and b/_img/day1_after/HET_variant.png differ diff --git a/_img/day1_after/HET_variant_gene_selected.png b/_img/day1_after/HET_variant_gene_selected.png new file mode 100644 index 0000000..87eccc3 Binary files /dev/null and b/_img/day1_after/HET_variant_gene_selected.png differ diff --git a/_img/day1_after/graphs.png b/_img/day1_after/graphs.png new file mode 100644 index 0000000..39df74f Binary files /dev/null and b/_img/day1_after/graphs.png differ diff --git a/_img/day1_after/read_details.png b/_img/day1_after/read_details.png new file mode 100644 index 0000000..15c99c8 Binary files /dev/null and b/_img/day1_after/read_details.png differ diff --git a/_img/day1_after/select_graph.png b/_img/day1_after/select_graph.png new file mode 100644 index 0000000..5d13302 Binary files /dev/null and b/_img/day1_after/select_graph.png differ diff --git a/_img/day1_after/spike_true.png b/_img/day1_after/spike_true.png new file mode 100644 index 0000000..3782999 Binary files /dev/null and b/_img/day1_after/spike_true.png differ diff --git a/_img/day1_morning/plot_1.png b/_img/day1_morning/plot_1.png new file mode 100644 index 0000000..fa9c0e0 Binary files /dev/null and b/_img/day1_morning/plot_1.png differ diff --git a/_img/day1_morning/plot_2.png b/_img/day1_morning/plot_2.png new file mode 100644 index 0000000..facddfe Binary files /dev/null and b/_img/day1_morning/plot_2.png differ diff --git a/_img/spandx.jpg b/_img/spandx.jpg new file mode 100644 index 0000000..43e124c Binary files /dev/null and b/_img/spandx.jpg differ diff --git a/backup/README.md b/backup/README.md new file mode 100644 index 0000000..0b9854f --- /dev/null +++ b/backup/README.md @@ -0,0 +1,70 @@ +# Bacterial Comparative Genomics Workshop + +#### A 3 day microbial bioinformatics workshop conducted by [Dr. Evan Snitkin](http://thesnitkinlab.com/index.php) at [University of Michigan](https://www.umich.edu/). This module covers the basics of microbial genomic analysis using publicly available tools that are commonly referenced in genomics literature. Students will learn the steps and associated tools that are required to process, annotate and compare microbial genomes. + +#### Date: Feb 28 - 2 March 2018 + + + +*** +#### Prerequisites: +- Prior participation in a [Software Carpentry Workshop](https://umswc.github.io/2018-02-26-UMich/) + + +*** + +#### Workshop: + +[Day 1 Morning](https://github.com/alipirani88/Comparative_Genomics/blob/master/day1_morning/README.md) +*** +- [Getting your data onto Flux and setting up Environment variable](https://github.com/alipirani88/Comparative_Genomics/blob/master/day1_morning/README.md#getting-your-data-onto-glux-and-setting-up-environment-variable) +- [Unix is your friend](https://github.com/alipirani88/Comparative_Genomics/blob/master/day1_morning/README.md#unix-is-your-friend) +- [Quality Control using FastQC](https://github.com/alipirani88/Comparative_Genomics/blob/master/day1_morning/README.md#quality-control-using-fastqc) +- [Quality Trimming using Trimmomatic](https://github.com/alipirani88/Comparative_Genomics/blob/master/day1_morning/README.md#quality-trimming-using-trimmomatic) + +[Day 1 Afternoon](https://github.com/alipirani88/Comparative_Genomics/blob/master/day1_afternoon/README.md#day-1-afternoon) +*** +- [Read Mapping](https://github.com/alipirani88/Comparative_Genomics/blob/master/day1_afternoon/README.md#read-mapping) +- [Variant Calling](https://github.com/alipirani88/Comparative_Genomics/blob/master/day1_afternoon/README.md#variant-calling-and-filteration) +- [Visualize BAM/VCF files in Artemis](https://github.com/alipirani88/Comparative_Genomics/blob/master/day1_afternoon/README.md#visualize-bam-and-vcf-files-in-artemis) + +[Day 2 Morning](https://github.com/alipirani88/Comparative_Genomics/blob/master/day2_morning/README.md#day-2-morning) +*** +- [Genome Assembly](https://github.com/alipirani88/Comparative_Genomics/blob/master/day2_morning/README.md#genome-assembly) +- [Assembly evaluation](https://github.com/alipirani88/Comparative_Genomics/blob/master/day2_morning/README.md#assembly-evaluation-using-quast) +- [Compare assembly to reference genome and Post-assembly genome improvement](https://github.com/alipirani88/Comparative_Genomics/blob/master/day2_morning/README.md#compare-assembly-to-reference-genome-and-post-assembly-genome-improvement) +- [Map reads to the final ordered assembly](https://github.com/alipirani88/Comparative_Genomics/blob/master/day2_morning/README.md#map-reads-to-the-final-ordered-assembly) +- [Genome Annotation](https://github.com/alipirani88/Comparative_Genomics/blob/master/day2_morning/README.md#genome-annotation) + +[Day 2 Afternoon](https://github.com/alipirani88/Comparative_Genomics/blob/master/day2_afternoon/README.md#day-2-afternoon) +*** +- [Determine which genomes contain beta-lactamase genes](https://github.com/alipirani88/Comparative_Genomics/blob/master/day2_afternoon/README.md#determine-which-genomes-contain-beta-lactamase-genes) +- [Identification of antibiotic resistance genes with LS-BSR and the ARDB database](https://github.com/alipirani88/Comparative_Genomics/blob/master/day2_afternoon/README.md#identification-of-antibiotic-resistance-genes-with-ls-bsr-and-the-ardb-database) +- [Perform pan-genome analysis with LS-BSR](https://github.com/alipirani88/Comparative_Genomics/blob/master/day2_afternoon/README.md#perform-pan-genome-analysis-with-ls-bsr) +- [Perform genome comparisons with ACT](https://github.com/alipirani88/Comparative_Genomics/blob/master/day2_afternoon/README.md#perform-genome-comparisons-with-act) + +[Day 3 Morning](https://github.com/alipirani88/Comparative_Genomics/blob/master/day3_morning/README.md#day-3-morning) +*** +- [Perform whole genome alignment with Mauve](https://github.com/alipirani88/Comparative_Genomics/blob/master/day3_morning/README.md#perform-whole-genome-alignment-with-Mauve) +- [Perform DNA sequence comparisons and phylogenetic analysis in ape](https://github.com/alipirani88/Comparative_Genomics/blob/master/day3_morning/README.md#perform-some-dna-sequence-comparisons-and-phylogenetic-analysis-in-ape) +- [Perform SNP density analysis to discern evidence of recombination](https://github.com/alipirani88/Comparative_Genomics/blob/master/day3_morning/README.md#perform-snp-density-analysis-to-discern-evidence-of-recombination) +- [Perform recombination filtering with gubbins](https://github.com/alipirani88/Comparative_Genomics/blob/master/day3_morning/README.md#perform-recombination-filtering-with-gubbins) +- [Create annotated publication quality trees with iTOL](https://github.com/alipirani88/Comparative_Genomics/blob/master/day3_morning/README.md#create-annotated-publication-quality-trees-with-itol) + +[Day 3 Afternoon](https://github.com/alipirani88/Comparative_Genomics/blob/master/day3_afternoon/README.md#day-3-afternoon) +*** +- [Perform QC on fastq files](https://github.com/alipirani88/Comparative_Genomics/blob/master/day3_afternoon/README.md#perform-qc-on-fastq-files) +- [Examine results of SPANDx pipeline](https://github.com/alipirani88/Comparative_Genomics/blob/master/day3_afternoon/README.md#examine-results-of-spandx-pipeline) +- [Recombination detection and tree generation](https://github.com/alipirani88/Comparative_Genomics/blob/master/day3_afternoon/README.md#recombination-detection-and-tree-generation) +- [Phylogenetic tree annotation and visualization](https://github.com/alipirani88/Comparative_Genomics/blob/master/day3_afternoon/README.md#phylogenetic-tree-annotation-and-visualization) +- [Assessment of genomic deletions](https://github.com/alipirani88/Comparative_Genomics/blob/master/day3_afternoon/README.md#assessment-of-genomic-deletions) + + + +[Helpful resources for microbial genomics](https://github.com/alipirani88/Comparative_Genomics/blob/master/online_resources/README.md#helpful-resources-for-microbial-genomics) +*** diff --git a/backup/sed.sh b/backup/sed.sh new file mode 100644 index 0000000..f921d2b --- /dev/null +++ b/backup/sed.sh @@ -0,0 +1 @@ +sed 's/\!\[alt tag\](https:\/\/github.com\/alipirani88\/Comparative_Genomics\/blob\/master\/_img\/day1_morning\//![alt tag](/g' day1_morning.md diff --git a/day1_afternoon/README.md b/day1_afternoon/README.md index ef64c28..1275502 100644 --- a/day1_afternoon/README.md +++ b/day1_afternoon/README.md @@ -1,4 +1,5 @@ -# Day 1 Afternoon +Day 1 Afternoon +=============== [[HOME]](https://github.com/alipirani88/Comparative_Genomics/blob/master/README.md) Earlier this morning, We performed some quality control steps on our sequencing data to make it clean and usable for various downstream analysis. Now we will perform our first sequence analysis, specifically variant calling, and map these reads to a reference genome and try to find out the differences between them. @@ -13,18 +14,19 @@ These alignment has a vast number of uses, including: In this session, we will be covering the important steps that are part of any Read mapping/Variant calling bioinformatics pipleine. -## Read Mapping +Read Mapping +------------ [[back to top]](https://github.com/alipirani88/Comparative_Genomics/blob/master/day1_afternoon/README.md) [[HOME]](https://github.com/alipirani88/Comparative_Genomics/blob/master/README.md) -![alt tag](https://github.com/alipirani88/Comparative_Genomics/blob/master/_img/day1_after/1.png) +![alt tag](https://github.com/alipirani88/Comparative_Genomics/blob/master/_img/day1_after/1_1.png) **1. Navigate to your workshop home directory and copy day1_after directory from shared data directory.** ``` wd -cp -r /scratch/micro612w17_fluxod/shared/data/day1_after ./ +cp -r /scratch/micro612w18_fluxod/shared/data/day1_after ./ ``` We will be using trimmed clean reads that were obtained after running Trimmomatic on raw reads. @@ -44,7 +46,7 @@ Read Mapping is a time-consuming step that involves searching the reference and Note: each read mapper has its own unique way of indexing a reference genome and therefore the reference index created by BWA cannot be used for Bowtie. (Most Bioinformatics tools nowadays require some kind of indexing or reference database creation) ->i. To create BWA index of Reference, you need to run following command. +> ***i. To create BWA index of Reference, you need to run following command.*** Start a flux interactive session @@ -58,9 +60,9 @@ Navigate to day1_after folder that you recently copied and create a new folder R ``` d1a -# or +#or -cd /scratch/micro612w17_fluxod/username/day1_after/ +cd /scratch/micro612w18_fluxod/username/day1_after/ mkdir Rush_KPC_266_varcall_result @@ -78,7 +80,7 @@ Also go ahead and create fai index file using samtools required by GATK in later samtools faidx KPNIH1.fasta ``` ->ii. Align reads to reference and redirect the output into SAM file +> ***ii. Align reads to reference and redirect the output into SAM file*** Quoting BWA: "BWA consists of three algorithms: BWA-backtrack, BWA-SW and BWA-MEM. The first algorithm is designed for Illumina sequence reads up to 100bp, while the rest two for longer sequences ranged from 70bp to 1Mbp. BWA-MEM and BWA-SW share similar features such as long-read support and split alignment, but BWA-MEM, which is the latest, is generally recommended for high-quality queries as it is faster and more accurate. BWA-MEM also has better performance than BWA-backtrack for 70-100bp Illumina reads." @@ -101,7 +103,7 @@ You can extract this information from fastq read header. (@M02127:96:000000000-A **3. SAM/BAM manipulation and variant calling using [Samtools](http://www.htslib.org/doc/samtools.html "Samtools Manual")** ->i. Change directory to results folder and look for BWA output: +> ***i. Change directory to results folder and look for BWA output:*** ``` cd Rush_KPC_266_varcall_result @@ -146,7 +148,7 @@ MD tag tells you what positions in the read alignment are different from referen AS is an alignment score and XS:i:0 is an suboptimal alignment score. ->ii. Convert SAM to BAM using SAMTOOLS: +> ***ii. Convert SAM to BAM using SAMTOOLS:*** BAM is the compressed binary equivalent of SAM but are usually quite smaller in size than SAM format. Since, parsing through a SAM format is slow, Most of the downstream tools require SAM file to be converted to BAM so that it can be easily sorted and indexed. @@ -156,7 +158,7 @@ The below command will ask samtools to convert SAM format(-S) to BAM format(-b) samtools view -Sb Rush_KPC_266__aln.sam > Rush_KPC_266__aln.bam ``` ->iii. Sort BAM file using SAMTOOLS: +> ***iii. Sort BAM file using SAMTOOLS:*** Most of the downstream tools such as GATK requires your BAM file to be indexed and sorted by reference genome positions. @@ -176,21 +178,21 @@ Picard identifies duplicates by searching reads that have same start position on ![alt tag](https://github.com/alipirani88/Comparative_Genomics/blob/master/_img/day1_after/picard.png) ->i. Create a dictionary for reference fasta file required by PICARD +> ***i. Create a dictionary for reference fasta file required by PICARD*** Make sure you are in Rush_KPC_266_varcall_result directory and are giving proper reference genome path (day1_after directory). ``` -java -jar /scratch/micro612w17_fluxod/shared/bin/picard-tools-1.130/picard.jar CreateSequenceDictionary REFERENCE=../KPNIH1.fasta OUTPUT=../KPNIH1.dict +java -jar /scratch/micro612w18_fluxod/shared/bin/picard-tools-1.130/picard.jar CreateSequenceDictionary REFERENCE=../KPNIH1.fasta OUTPUT=../KPNIH1.dict ``` ->ii. Run PICARD for removing duplicates. +> ***ii. Run PICARD for removing duplicates.*** ``` -java -jar /scratch/micro612w17_fluxod/shared/bin/picard-tools-1.130/picard.jar MarkDuplicates REMOVE_DUPLICATES=true INPUT=Rush_KPC_266__aln_sort.bam OUTPUT=Rush_KPC_266__aln_marked.bam METRICS_FILE=Rush_KPC_266__markduplicates_metrics CREATE_INDEX=true VALIDATION_STRINGENCY=LENIENT +java -jar /scratch/micro612w18_fluxod/shared/bin/picard-tools-1.130/picard.jar MarkDuplicates REMOVE_DUPLICATES=true INPUT=Rush_KPC_266__aln_sort.bam OUTPUT=Rush_KPC_266__aln_marked.bam METRICS_FILE=Rush_KPC_266__markduplicates_metrics CREATE_INDEX=true VALIDATION_STRINGENCY=LENIENT ``` @@ -198,118 +200,162 @@ The output of Picard remove duplicate step is a new bam file "Rush_KPC_266__aln_ You will need to index this new marked.bam file for further processing. ->iii. Index these marked bam file again using SAMTOOLS(For input in Artemis later) +> ***iii. Index these marked bam file again using SAMTOOLS(For input in Artemis later)*** ``` samtools index Rush_KPC_266__aln_marked.bam ``` Open the markduplicates metrics file and glance through the number and percentage of PCR duplicates removed. -For more details about each metrics in a metrics file, please refer [this](https://broadinstitute.github.io/picard/picard-metric-definitions.html#DuplicationMetrics) +For more details about each metrics in a metrics file, please refer to [this](https://broadinstitute.github.io/picard/picard-metric-definitions.html#DuplicationMetrics) ``` nano Rush_KPC_266__markduplicates_metrics -# or +#or less Rush_KPC_266__markduplicates_metrics ``` -## Generate Alignment Statistics +Generate Alignment Statistics +----------------------------- -Often, While analyzing sequencing data, we are required to make sure that our analysis steps are correct. Some statistics about our analysis will help us in making that decision. So Lets try to get some statistics about various outputs that were created using the above steps and check if everything makes sense. +Often, while analyzing sequencing data, we are required to make sure that our analysis steps are correct. Some statistics about our analysis will help us in making that decision. So Lets try to get some statistics about various outputs that were created using the above steps and check if everything makes sense. ->i. Collect Alignment statistics using Picard +> ***i. Collect Alignment statistics using Picard*** Run the below command on your marked.bam file ``` -java -jar /scratch/micro612w17_fluxod/shared/bin/picard-tools-1.130/picard.jar CollectAlignmentSummaryMetrics R=../KPNIH1.fasta I=Rush_KPC_266__aln_marked.bam O=AlignmentSummaryMetrics.txt +java -jar /scratch/micro612w18_fluxod/shared/bin/picard-tools-1.130/picard.jar CollectAlignmentSummaryMetrics R=../KPNIH1.fasta I=Rush_KPC_266__aln_marked.bam O=AlignmentSummaryMetrics.txt ``` -Open the file AlignmentSummaryMetrics.txt and explore various statistics. It will generate various statistics and the definition for each statistic s can be found [here](http://broadinstitute.github.io/picard/picard-metric-definitions.html#AlignmentSummaryMetrics) +Open the file AlignmentSummaryMetrics.txt and explore various statistics. It will generate various statistics and the definition for each can be found [here](http://broadinstitute.github.io/picard/picard-metric-definitions.html#AlignmentSummaryMetrics) -> Question: Extract alignment percentage from AlignmentSummaryMetrics file. (% of reads aligned to reference genome) +The file AlignmentSummaryMetrics.txt contains many columns and at times it becomes difficult to extract information from a particular column if we dont know the exact column number. Run the below unix gem to print column name with its number. ``` +grep 'CATEGORY' AlignmentSummaryMetrics.txt | tr '\t' '\n' | cat --number +``` + +- Question: Extract alignment percentage from AlignmentSummaryMetrics file. (% of reads aligned to reference genome) + + + +``` +grep -v '#' AlignmentSummaryMetrics.txt | cut -f7 ``` ->ii. Estimate read coverage/read depth using Picard +Try to explore other statistics and their definitions from Picard AlignmentSummaryMetrics [link](http://broadinstitute.github.io/picard/picard-metric-definitions.html#AlignmentSummaryMetrics) + +> ***ii. Estimate read coverage/read depth using Picard*** -Read coverage/depth describes the average number of reads that align to, or "cover," known reference bases. +Read coverage/depth describes the average number of reads that align to, or "cover," known reference bases. The sequencing depth is one of the most crucial issue in the design of next-generation sequencing experiments. This [paper](https://www.nature.com/articles/nrg3642) review current guidelines and precedents on the issue of coverage, as well as their underlying considerations, for four major study designs, which include de novo genome sequencing, genome resequencing, transcriptome sequencing and genomic location analyses + +After read mapping, it is important to make sure that the reference bases are represented by enough read depth before making any inferences such as variant calling. ``` -java -jar /scratch/micro612w17_fluxod/shared/bin/picard-tools-1.130/picard.jar CollectWgsMetrics R=../KPNIH1.fasta I=Rush_KPC_266__aln_marked.bam O=WgsMetrics.txt +java -jar /scratch/micro612w18_fluxod/shared/bin/picard-tools-1.130/picard.jar CollectWgsMetrics R=../KPNIH1.fasta I=Rush_KPC_266__aln_marked.bam O=WgsMetrics.txt ``` -Open the file WgsMetrics.txt and explore various statistics. It will generate various statistics and the definition for each statistic s can be found [here](https://broadinstitute.github.io/picard/picard-metric-definitions.html#CollectWgsMetrics.WgsMetrics) +Open the file "WgsMetrics.txt" and explore various statistics. It will generate various statistics and the definition for each can be found [here](https://broadinstitute.github.io/picard/picard-metric-definitions.html#CollectWgsMetrics.WgsMetrics). -> Question: Extract mean coverage information from WgsMetrics.txt +Print column names +``` +grep 'GENOME_TERRITORY' WgsMetrics.txt | tr '\t' '\n' | cat --number ``` -sed -n 7,8p WgsMetrics.txt | awk -F'\t' '{print $2}' +Since "WgsMetrics.txt" also contains histogram information, we will run commands on only the first few lines to extract information. -``` - -qualimap bamqc -bam Rush_KPC_266__aln_sort.bam -outdir ./ -outfile Rush_KPC_266__report.pdf -outformat pdf +``` +grep -v '#' WgsMetrics.txt | cut -f2 | head -n3 ``` -Lets get this pdf report onto our local system and check the chromosome stats table, mapping quality and coverage across the entire reference genome. +> Question: Percentage of bases that attained at least 5X sequence coverage. +``` +grep -v '#' WgsMetrics.txt | cut -f13 | head -n3 ``` -scp username@flux-xfer.arc-ts.umich.edu:/scratch/micro612w17_fluxod/username/day1_after/Rush_KPC_266_varcall_result/Rush_KPC_266__report.pdf /path-to-local-directory/ +> Question: Percentage of bases that had siginificantly high coverage. Regions with unusually high depth sometimes indicate either repetitive regions or PCR amplification bias. +``` +grep -v '#' WgsMetrics.txt | cut -f25 | head -n3 +``` + + -## Variant Calling and Filteration + +Variant Calling and Filteration +------------------------------- [[back to top]](https://github.com/alipirani88/Comparative_Genomics/blob/master/day1_afternoon/README.md) [[HOME]](https://github.com/alipirani88/Comparative_Genomics/blob/master/README.md) -One of the downstream uses of read mapping is finding differences between our sequence data against a reference. This step is achieved by carrying out variants calling using any of the variant callers(samtools, gatk, freebayes etc). Each variant caller uses a different statistical framework to discover SNPs and other types of mutations. For those of you who are interested in finding out more about the statistics involved, please refer to [this]() samtools paper, one of most commonly used variant callers. +One of the downstream uses of read mapping is finding differences between our sequence data against a reference. This step is achieved by carrying out variant calling using any of the variant callers (samtools, gatk, freebayes etc). Each variant caller uses a different statistical framework to discover SNPs and other types of mutations. For those of you who are interested in finding out more about the statistics involved, please refer to [this]() samtools paper, one of most commonly used variant callers. -This GATK best practices [guide](https://www.broadinstitute.org/gatk/guide/best-practices.php) will provide more details about various steps that you can incorporate in your analysis. +The [GATK best practices guide](https://www.broadinstitute.org/gatk/guide/best-practices.php) will provide more details about various steps that you can incorporate in your analysis. -There are many published articles that compares different variant callers but this is a very interesting [blog](https://bcbio.wordpress.com/2013/10/21/updated-comparison-of-variant-detection-methods-ensemble-freebayes-and-minimal-bam-preparation-pipelines/) that compares the performance and accuracy of different variant callers. +There are many published articles that compare different variant callers but this is a very interesting [blog post](https://bcbio.wordpress.com/2013/10/21/updated-comparison-of-variant-detection-methods-ensemble-freebayes-and-minimal-bam-preparation-pipelines/) that compares the performance and accuracy of different variant callers. -Here we will use samtools mpileup to perform this operation on our BAM file and generate VCF file. +Here we will use samtools mpileup to perform this operation on our BAM file and generate a VCF (variant call format) file. **1. Call variants using [samtools](http://www.htslib.org/doc/samtools.html "samtools manual") mpileup and [bcftools](https://samtools.github.io/bcftools/bcftools.html "bcftools")** ``` -/scratch/micro612w17_fluxod/shared/bin/samtools-1.2/samtools mpileup -ug -f ../KPNIH1.fasta Rush_KPC_266__aln_marked.bam | /scratch/micro612w17_fluxod/shared/bin/bcftools-1.2/bcftools call -O v -v -c -o Rush_KPC_266__aln_mpileup_raw.vcf +samtools mpileup -ug -f ../KPNIH1.fasta Rush_KPC_266__aln_marked.bam | bcftools call -O v -v -c -o Rush_KPC_266__aln_mpileup_raw.vcf -# In the above command, we are using samtools mpileup to generate a pileup formatted file from BAM alignments and genotype likelihoods(-g flag) in BCF format(binary version of vcf). This bcf output is then piped to bcftools, which calls variants and outputs them in vcf format(-c flag for using consensus calling algorithm and -v for outputting variants positions only) +#In the above command, we are using samtools mpileup to generate a pileup formatted file from BAM alignments and genotype likelihoods (-g flag) in BCF format (binary version of vcf). This bcf output is then piped to bcftools, which calls variants and outputs them in vcf format (-c flag for using consensus calling algorithm and -v for outputting variants positions only) ``` -Lets go through an the vcf file and try to understand a few important vcf specifications and criteria that we can use for filtering low confidence snps. +Let's go through the VCF file and try to understand a few important VCF specifications and criteria that we can use for filtering low confidence SNPs. ``` less Rush_KPC_266__aln_mpileup_raw.vcf ``` -Press 'q' from keyboard to exit. +1. CHROM, POS: 1st and 2nd column represent the reference genome name and reference base position where a variant was called +2. REF, ALT: 4th and 5th columns represent the reference allele at the position and alternate/variant allele called from the reads +3. QUAL: Phred-scaled quality score for the assertion made in ALT +4. INFO: Additional information that provides technical scores and obervations for each variant. Important parameters to look for: Depth (DP), mapping quality (MQ), FQ (consensus score), allele frequency for each ALT allele (AF) + +VCF format stores a large variety of information and you can find more details in [this pdf](https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0ahUKEwit35bvktzLAhVHkoMKHe3hAhYQFggdMAA&url=https%3A%2F%2Fsamtools.github.io%2Fhts-specs%2FVCFv4.2.pdf&usg=AFQjCNGFka33WgRmvOfOfp4nSaCzkV95HA&sig2=tPLD6jW5ALombN3ALRiCZg&cad=rja). + +Lets count the number of raw unfiltered variants found: -VCF format stores a large variety of information and you can find more details about each nomenclature in this [pdf](https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0ahUKEwit35bvktzLAhVHkoMKHe3hAhYQFggdMAA&url=https%3A%2F%2Fsamtools.github.io%2Fhts-specs%2FVCFv4.2.pdf&usg=AFQjCNGFka33WgRmvOfOfp4nSaCzkV95HA&sig2=tPLD6jW5ALombN3ALRiCZg&cad=rja) +``` +grep -v '#' Rush_KPC_266__aln_mpileup_raw.vcf | wc -l +grep -v '#' Rush_KPC_266__aln_mpileup_raw.vcf | grep 'INDEL' | wc -l +``` **2. Variant filtering and processed file generation using GATK and vcftools** ->i. Variant filtering using [GATK](https://www.broadinstitute.org/gatk/guide/tooldocs/org_broadinstitute_gatk_tools_walkers_filters_VariantFiltration.php "GATK Variant Filteration"): +> ***i. Variant filtering using [GATK](https://www.broadinstitute.org/gatk/guide/tooldocs/org_broadinstitute_gatk_tools_walkers_filters_VariantFiltration.php "GATK Variant Filteration"):*** There are various tools that can you can try for variant filteration such as vcftools, GATK, vcfutils etc. Here we will use GATK VariantFiltration utility to filter out low confidence variants. @@ -317,7 +363,7 @@ Run this command on raw vcf file Rush_KPC_266__aln_mpileup_raw.vcf. ``` -java -jar /scratch/micro612w17_fluxod/shared/bin/GenomeAnalysisTK-3.3-0/GenomeAnalysisTK.jar -T VariantFiltration -R ../KPNIH1.fasta -o Rush_KPC_266__filter_gatk.vcf --variant Rush_KPC_266__aln_mpileup_raw.vcf --filterExpression "FQ < 0.025 && MQ > 50 && QUAL > 100 && DP > 15" --filterName pass_filter +java -jar /scratch/micro612w18_fluxod/shared/bin/GenomeAnalysisTK-3.3-0/GenomeAnalysisTK.jar -T VariantFiltration -R ../KPNIH1.fasta -o Rush_KPC_266__filter_gatk.vcf --variant Rush_KPC_266__aln_mpileup_raw.vcf --filterExpression "FQ < 0.025 && MQ > 50 && QUAL > 100 && DP > 15" --filterName pass_filter ``` @@ -328,19 +374,20 @@ This command will add a 'pass_filter' text in the 7th FILTER column for those va 3. QUAL stands for phred-scaled quality score for the assertion made in ALT. High QUAL scores indicate high confidence calls. 4. FQ stands for consensus quality. A positive value indicates heterozygote and a negative value indicates homozygous. In bacterial analysis, this plays an important role in defining if a gene was duplicated in a particular sample. We will learn more about this later while visualizing our BAM files in Artemis. -Check if the pass_filter was added properly. +Check if the pass_filter was added properly and count the number of variants that passed the filter. ``` grep 'pass_filter' Rush_KPC_266__filter_gatk.vcf | head + ``` -caveat: These filter criteria should be applied carefully after giving some thought to the type of library, coverage, average mapping quality, type of analysis and other such requirements. +***Caveat: This filter criteria should be applied carefully after giving some thought to the type of library, coverage, average mapping quality, type of analysis and other such requirements.*** ->ii. Remove indels and keep only SNPS that passed our filter criteria using [vcftools](http://vcftools.sourceforge.net/man_latest.html vcftools manual): +> ***ii. Remove indels and keep only SNPS that passed our filter criteria using [the vcftools manual](http://vcftools.sourceforge.net/man_latest.html):*** -vcftools is a program package that is especially written to work with vcf file formats. It thus saves your precious time by making available all the common operations that you would like to perform on vcf file using a single command. One such operation is removing INDEL infromation from a vcf file. +vcftools is a program package that is especially written to work with vcf file formats. It thus saves your precious time by making available all the common operations that you would like to perform on the vcf file using a single command. One such operation is removing INDEL information from a vcf file. -Now, Lets remove indels from our final vcf file and keep only variants that passed our filter criteria(positions with pass_filter in their FILTER column). +Now, let's remove indels from our final vcf file and keep only variants that passed our filter criteria (positions with pass_filter in their FILTER column). ``` @@ -351,70 +398,66 @@ vcftools --vcf Rush_KPC_266__filter_gatk.vcf --keep-filtered pass_filter --remov -**3. Variant Annotation using snpEff** +***3. Variant Annotation using snpEff*** -Variant annotation is one of the crucial steps in any variant calling pipeline. Most of the variant annotation tools creates their own database or use an external one to assign function and predict the effect of variants on genes. We will try to touch base on some basic steps of annotating variants in our vcf file using snpEff. +Variant annotation is one of the crucial steps in any variant calling pipeline. Most of the variant annotation tools create their own database or use an external one to assign function and predict the effect of variants on genes. We will try to touch base on some basic steps of annotating variants in our vcf file using snpEff. You can annotate these variants before performing any filtering steps that we did earlier or you can decide to annotate just the final filtered variants. -snpEff contains database of about 20000 reference genome built from trusted and public sources. Lets check if snpEff contains a database of our reference genome. +snpEff contains a database of about 20,000 reference genomes built from trusted and public sources. Lets check if snpEff contains a database of our reference genome. ->i. Check snpEff internal database for your reference genome: +> ***i. Check snpEff internal database for your reference genome:*** ``` -java -jar /scratch/micro612w17_fluxod/shared/bin/snpEff/snpEff.jar databases | grep 'kpnih1' +java -jar /scratch/micro612w18_fluxod/shared/bin/snpEff/snpEff.jar databases | grep 'kpnih1' ``` Note down the genome id for your reference genome KPNIH1. In this case: GCA_000281535.2.29 ->ii. Change the chromosome name in vcf file to ‘Chromosome’ for snpEff reference database compatibility. +> ***ii. Change the chromosome name in the vcf file to ‘Chromosome’ for snpEff reference database compatibility.*** ``` sed -i 's/gi.*|/Chromosome/g' Rush_KPC_266__filter_gatk.vcf ``` ->iii. Run snpEff for variant annotation. +> ***iii. Run snpEff for variant annotation.*** ``` -java -jar /scratch/micro612w17_fluxod/shared/bin/snpEff/snpEff.jar -onlyProtein -no-upstream -no-downstream -no-intergenic -v GCA_000281535.2.29 Rush_KPC_266__filter_gatk.vcf > Rush_KPC_266__filter_gatk_ann.vcf -csvStats Rush_KPC_266__filter_gatk_stats +java -jar /scratch/micro612w18_fluxod/shared/bin/snpEff/snpEff.jar -onlyProtein -no-upstream -no-downstream -no-intergenic -v GCA_000281535.2.29 Rush_KPC_266__filter_gatk.vcf > Rush_KPC_266__filter_gatk_ann.vcf -csvStats Rush_KPC_266__filter_gatk_stats ``` -The STDOUT will print out some useful details such as genome name and version being used, no. of genes, protein-coding genes and transcripts, chromosome and plasmid names etc +The STDOUT will print out some useful details such as genome name and version being used, no. of genes, protein-coding genes and transcripts, chromosome and plasmid names etc. -Lets go through the ANN field added after annotation step. +snpEff will add an extra field named 'ANN' at the end of INFO field. Lets go through the ANN field added after annotation step. ``` grep 'ANN=' Rush_KPC_266__filter_gatk_ann.vcf | head -n1 + +or to print on seperate lines + +grep -o 'ANN=.*GT:PL' Rush_KPC_266__filter_gatk_ann.vcf | head -n1 | tr '|' '\n' | cat --number ``` -ANN field will provide information such as the impact of variants (HIGH/LOW/MODERATE/MODIFIER) on genes and transcripts along with other useful annotations. +The ANN field will provide information such as the impact of variants (HIGH/LOW/MODERATE/MODIFIER) on genes and transcripts along with other useful annotations. -Detailed information of ANN field and sequence ontology terms that it uses can be found [here](http://snpeff.sourceforge.net/SnpEff_manual.html#input) +Detailed information of the ANN field and sequence ontology terms that it uses can be found [here](http://snpeff.sourceforge.net/SnpEff_manual.html#input). -Lets see how many SNPs and Indels passed the filter using grep and wc +Let's see how many SNPs and Indels passed the filter using grep and wc. ``` @@ -433,21 +476,26 @@ grep '^Chromosome.*pass_filter' Rush_KPC_266__filter_gatk_ann.vcf | grep 'INDEL' ``` -## Visualize BAM and VCF files in [Artemis](http://www.sanger.ac.uk/science/tools/artemis) +Visualize BAM and VCF files in [Artemis](http://www.sanger.ac.uk/science/tools/artemis) +---------------------------------------- [[back to top]](https://github.com/alipirani88/Comparative_Genomics/blob/master/day1_afternoon/README.md) [[HOME]](https://github.com/alipirani88/Comparative_Genomics/blob/master/README.md) While these various statistical/text analyses are helpful, visualization of all of these various output files can help in making some significant decisions and inferences about your entire analysis. There are a wide variety of visualization tools out there that you can choose from for this purpose. -We will be using [Artemis](http://www.sanger.ac.uk/science/tools/artemis) here, developed by Sanger Institute for viewing BAM and vcf files for manual inspection of some of the variants. +We will be using [Artemis](http://www.sanger.ac.uk/science/tools/artemis) here, developed by the Sanger Institute for viewing BAM and vcf files for manual inspection of some of the variants. + +- ***Required Input files:*** -> Required Input files: -KPNIH1 reference fasta and genbank file, -Rush_KPC_266__aln_marked.bam and Rush_KPC_266__aln_marked.bam.bai, -Rush_KPC_266__filter_gatk_ann.vcf.gz and Rush_KPC_266__filter_gatk_ann.vcf.gz.tbi +> KPNIH1 reference fasta +> KPNIH1 genbank file +> Rush_KPC_266__aln_marked.bam +> Rush_KPC_266__aln_marked.bam.bai +> Rush_KPC_266__filter_gatk_ann.vcf.gz +> Rush_KPC_266__filter_gatk_ann.vcf.gz.tbi -Lets make a seperate folder(make sure you are in Rush_KPC_266_varcall_result folder) for the files that we need for visualization and copy it to that folder +Let's make a seperate folder (make sure you are in the Rush_KPC_266_varcall_result folder) for the files that we need for visualization and copy it to that folder ``` @@ -470,65 +518,85 @@ bgzip Rush_KPC_266__filter_gatk_ann.vcf tabix Rush_KPC_266__filter_gatk_ann.vcf.gz ``` -Open a new terminal and run scp/sftp commands to get these files to your local system. +Open a new terminal and run the scp command or cyberduck to get these files to your local system. ``` -scp -r username@flux-xfer.arc-ts.umich.edu:/scratch/micro612w17_fluxod/username/day1_after/Rush_KPC_266_varcall_result/Artemis_files/ /path-to-local-directory/ +scp -r username@flux-xfer.arc-ts.umich.edu:/scratch/micro612w18_fluxod/username/day1_after/Rush_KPC_266_varcall_result/Artemis_files/ /path-to-local-directory/ -# You can use ~/Desktop/ as your local directory path +#You can use ~/Desktop/ as your local directory path ``` -start Artemis. +Start Artemis. -Set your working directory to Artemis_files(The Artemis_files folder that you copied to your local system) by clicking at browse button and click OK. +Set your working directory to Artemis_files (the Artemis_files folder that you copied to your local system) by clicking the browse button and click OK. Now go to the top left File options and select Open File Manager. You should see the folder Artemis_files. Expand it and select KPNIH.gb file. A new window should open displaying your features stored in a genbank file. -Now open BAM file by selecting File(Top left corner) -> Read BAM/VCF file -> Select -> Rush_KPC_266__aln_marked.bam -> OK +Now open the BAM file by selecting File (Top left corner) -> Read BAM/VCF file -> Select -> Rush_KPC_266__aln_marked.bam -> OK -Reads aligned to your reference are displayed as stacked at the top panel of Artemis. The reads are colour coded so that paired reads are blue and those with an inversion are red. Reads that do not have a mapped mate are black and are optionally shown in the inferred insert size view. In the stack view, duplicated reads that span the same region are collapsed into one green line. +Reads aligned to your reference are displayed as stacked at the top panel of Artemis. The reads are color-coded so that paired reads are blue and those with an inversion are red. Reads that do not have a mapped mate are black and are optionally shown in the inferred insert size view. In the stack view, duplicated reads that span the same region are collapsed into one green line. -Now right click on any of the stacked reads and Go to Graph and select Coverage(screenshot below). +Now right click on any of the stacked reads and Go to Graph and select Coverage (screenshot below). -Now right click on any of the stacked reads and Go to Show and select SNP marks to show SNP's in red marks. +Now right click on any of the stacked reads and Go to Show and select SNP marks to show SNPs in red marks. -![alt tag](https://github.com/alipirani88/Comparative_Genomics/blob/master/_img/day1_after/artemis/select_graph.png) +![alt tag](https://github.com/alipirani88/Comparative_Genomics/blob/master/_img/day1_after/select_graph.png) Follow the same procedure and select SNP graph. Adjust the gene features panel height to show all the graph in a window. -![alt tag](https://github.com/alipirani88/Comparative_Genomics/blob/master/_img/day1_after/artemis/graphs.png) +![alt tag](https://github.com/alipirani88/Comparative_Genomics/blob/master/_img/day1_after/graphs.png) Play around by moving the genbank panel cursor to look at coverage and SNP density across the genome. This will let you look at any regions where the coverage or SNP density is unusually high or low. If you click a read, its mate pair will also be selected. If the cursor hovers over a read for long enough details of that read will appear in a small box. For more details of the read, right-click and select 'Show details of: READ NAME' (last option in list) from the -menu.(screenshot below) This will open up a new window giving you some useful details such as mapping quality, coordinates etc. +menu (screenshot below). This will open up a new window giving you some useful details such as mapping quality, coordinates etc. -![alt tag](https://github.com/alipirani88/Comparative_Genomics/blob/master/_img/day1_after/artemis/read_details.png) +![alt tag](https://github.com/alipirani88/Comparative_Genomics/blob/master/_img/day1_after/read_details.png) -The snps are denoted by red marks as observed inside the reads. Go to one of the SNPs in VCF file(Position: 50195) by directly navigating to the position. For this, select Goto at the top -> select Navigator -> Type the position in Goto Base box +The snps are denoted by red marks as observed inside the reads. Go to one of the SNPs in the VCF file (Position: 50195) by directly navigating to the position. For this, select Goto at the top -> select Navigator -> Type the position in Goto Base box -You will Notice a spike in the middle of the SNP graph window. This is one of the SNPs that passed all our filter criteria. (Screenshot) +You will notice a spike in the middle of the SNP graph window. This is one of the SNPs that passed all our filter criteria. (Screenshot) -![alt tag](https://github.com/alipirani88/Comparative_Genomics/blob/master/_img/day1_after/artemis/spike_true.png) +![alt tag](https://github.com/alipirani88/Comparative_Genomics/blob/master/_img/day1_after/spike_true.png) -Lets try to see an example of HET variant. Variant positions where more than one allele(variants) with suffficiently high read depth are observed are considered as HET type variant. +Lets try to see an example of HET variant. Variant positions where more than one allele (variant) with sufficiently high read depth are observed are considered HET type variants. -For this, click on Goto option at the top and select navigator. Type 321818 in Goto Base box and click Goto. +For this, click on tje Goto option at the top and select navigator. Type 321818 in Goto Base box and click Goto. -You will see a thick spike in the SNP graph as well as thick red vertical line in BAM panel. Also notice the sudden spike in the coverage for this particular region compared to its flanking region(Region before and after a selected region). The coverage here is more than 300 which is unusually high compared to the entire genome coverage. This means that more than one allele with high quality and depth were observed at these positions so we cannot decide which one of these is a true variant. We removed these types of variants during our Variant Filteration step using the criteria FQ. (If the FQ is unusually high, it is suggestive of HET variant and negative FQ value is a suggestive of true variant as observed in the mapped reads) +You will see a thick spike in the SNP graph as well as thick red vertical line in BAM panel. Also notice the sudden spike in the coverage for this particular region compared to its flanking region (the region before and after a selected region). The coverage here is more than 300 which is unusually high compared to the entire genome coverage. This means that more than one allele with high quality and depth were observed at these positions so we cannot decide which one of these is a true variant. We removed these types of variants during our Variant Filteration step using the criteria FQ. (If the FQ is unusually high, it is suggestive of a HET variant and negative FQ value is a suggestive of true variant as observed in the mapped reads) -![alt tag](https://github.com/alipirani88/Comparative_Genomics/blob/master/_img/day1_after/artemis/HET_variant.png) +![alt tag](https://github.com/alipirani88/Comparative_Genomics/blob/master/_img/day1_after/HET_variant.png) -Now select the gene right below this spiked region. Right click on this gene(KPNIH1_RS01560) and select Zoom to Selection. +Now select the gene right below this spiked region. Right click on this gene (KPNIH1_RS01560) and select Zoom to Selection. -![alt tag](https://github.com/alipirani88/Comparative_Genomics/blob/master/_img/day1_after/artemis/HET_variant_gene_selected.png) +![alt tag](https://github.com/alipirani88/Comparative_Genomics/blob/master/_img/day1_after/HET_variant_gene_selected.png) Check the details about gene by selecting View -> Selected Features -You can inspect these type of HET variants later for any gene duplication or copy number analysis (by extracting variant positions with high FQ values). Addition of these details will give a better resolution while inferring Phylogenetic trees. +You can inspect these type of HET variants later for any gene duplication or copy number analysis (by extracting variant positions with high FQ values). Addition of these details will give a better resolution while inferring phylogenetic trees. -Play around with Artemis to look at what other kind of information you can find from these BAM and vcf files. Also refer to the manual at Artemis [Homepage](http://www.sanger.ac.uk/science/tools/artemis) for full information about its usage. +Play around with Artemis to look at what other kind of information you can find from these BAM and vcf files. Also refer to the manual at the [Artemis Homepage](http://www.sanger.ac.uk/science/tools/artemis) for full information about its usage. [[back to top]](https://github.com/alipirani88/Comparative_Genomics/blob/master/day1_afternoon/README.md) [[HOME]](https://github.com/alipirani88/Comparative_Genomics/blob/master/README.md) + + +VRE variant calling analysis +---------------------------- + +Today, we learned how to assess the quality, perform quality trimming and variant calling to find variants between the sample and reference genome. This exercise requires you to apply these tools and commands on a new data set. These samples both come from a patient infected with VRE before and after treatment with daptomycin. The first sample was the patients initial sample and is susceptible to daptomycin, and the second was after daptomycin resistance emerged during treatment. Your goal is to map reads from the resistant genome to the susceptible reference and search for variants that may be associated with resistance. To accomplish this you will run the programs from this session to generate filtered variant files (VCF), and then explore these variants in Artemis to see what genes they are in. To help with your interpretation, see if you see any genes hit that were reported in this [paper](http://www.nejm.org/doi/full/10.1056/nejmoa1011138), which was the first to idenitfy putative daptomycin resistance loci. + +- Use VRE_daptoS_ref_strain.fa as your reference genome and VRE_daptoS_gene_annot.gff annotation file for Artemis. + +- This is how the command and tools workflow should look like: + +>1. FastQC to check the quality of reads(you can skip here for time) +>2. Trimmomatic to remove bad quality data(you can skip here for time) +>3. Prepare reference genome index for BWA and align reads to reference genome +>4. SAM/BAM manipulation using samtools +>5. Remove duplicates using picard(dont forget to create a dictionary for reference fasta file required by PICARD) +>6. Index marked bam file generated by picard using SAMTOOLS(For input in Artemis later) +>7. Variant calling using samtools +>8. Variant Filteration using GATK +>9. Visualize BAM and VCF files in Artemis diff --git a/day1_morning/README.md b/day1_morning/README.md index d593324..f538067 100644 --- a/day1_morning/README.md +++ b/day1_morning/README.md @@ -1,12 +1,29 @@ -# Day 1 Morning +Day 1 Morning +============= [[HOME]](https://github.com/alipirani88/Comparative_Genomics/blob/master/README.md) -## If you were not able to follow the video, here is the [link](https://www.youtube.com/watch?v=womKfikWlxM) to illumina Sequencing +Installing and setting up Cyberduck for file transfer +----------------------------------------------------- -## Getting your data onto Flux and setting up environment variable +During workshop, we will transfer different output files from flux to your local system. Cyberduck makes it easier to drag and drop any remote file onto your local system and vice versa. Of course, you can use "scp" to transfer files but Cyberduck provides a graphical interface to manage file transfer and helps avoid typing long file paths and commands. + +> ***1. Go to [this](https://cyberduck.io/) cyberduck website and download the executable for your respective operating system.*** + +> ***2. Double-click on the downloaded zip file to unzip it and double click cyberduck icon.*** + +> ***3. Type sftp://flux-xfer.arc-ts.umich.edu in quickconnect bar, press enter and enter your flux username and password.*** + +> ***4. This will take you to your flux home directory /home/username. Select "Go" from tool bar at the top then select "Go to folder" and enter workshop home directory path: /scratch/micro612w18_fluxod/*** + +To transfer or upload a file, you can drag and drop it into the location you want. + + +Getting your data onto Flux and setting up environment variable +--------------------------------------------------------------- **Log in to Flux** + ``` ssh username@flux-login.arc-ts.umich.edu ``` @@ -15,7 +32,12 @@ ssh username@flux-login.arc-ts.umich.edu **Setting up environment variables in .bashrc file so your environment is all set for genomic analysis!** -Environment variables are the variables/values that describe the environment in which programs run in. All the programs and scripts on your unix system use these variables for extracting information such as: What is my current working directory?, Where are temporary files stored?, Where are perl/python libraries?, Where is Blast installed? etc. +Environment variables are the variables/values that describe the environment in which programs run in. All the programs and scripts on your unix system use these variables for extracting information such as: + +- What is my current working directory?, +- Where are temporary files stored?, +- Where are perl/python libraries?, +- Where is Blast installed? etc. In addition to environment variables that are set up by system administators, each user can set their own environment variables to customize their experience. This may sound like something super advanced that isn't relevant to beginners, but that's not true! @@ -29,9 +51,9 @@ Some examples of ways that we will use environment variables in the class are: One way to set your environment variables would be to manually set up these variables everytime you log in, but this would be extremely tedious and inefficient. So, Unix has setup a way around this, which is to put your environment variable assignments in special files called .bashrc or .bash_profile. Every user has one or both of these files in their home directory, and what's special about them is that the commands in them are executed every time you login. So, if you simply set your environmental variable assignments in one of these files, your environment will be setup just the way you want it each time you login! -All the softwares/tools that we need in this workshop are installed in a directory "/scratch/micro612w17_fluxod/shared/bin/" and we want the shell to look for these installed tools in this directory. For this, We will save the full path to these tools in an environment variable PATH. +All the softwares/tools that we need in this workshop are installed in a directory "/scratch/micro612w18_fluxod/shared/bin/" and we want the shell to look for these installed tools in this directory. For this, We will save the full path to these tools in an environment variable PATH. ->i. Make a backup copy of bashrc file in case something goes wrong. +> ***i. Make a backup copy of bashrc file in case something goes wrong.*** ``` @@ -41,69 +63,76 @@ cp ~/.bashrc ~/bashrc_backup ``` ->ii. Open ~/.bashrc file using any text editor and add the following lines to your .bashrc file. - -Note: Replace "username" under alias shortcuts with your own umich "uniqname". You can also customize the alias name such as wd, d1m etc. catering to your own need and convenience. +> ***ii. Open ~/.bashrc file using any text editor and add the following lines to your .bashrc file.***
- Click to expand entries + Click here to expand entries ``` -## Micro612 Workshop ENV +##Micro612 Workshop ENV #Aliases -alias iflux='qsub -I -V -l nodes=1:ppn=4,pmem=4000mb,walltime=1:00:00:00 -q fluxod -l qos=flux -A micro612w17_fluxod' -alias wd='cd /scratch/micro612w17_fluxod/username/' -alias d1m='cd /scratch/micro612w17_fluxod/username/day1_morn' -alias d1a='cd /scratch/micro612w17_fluxod/username/day1_after' -alias d2m='cd /scratch/micro612w17_fluxod/username/day2_morn' -alias d2a='cd /scratch/micro612w17_fluxod/username/day2_after' -alias d3m='cd /scratch/micro612w17_fluxod/username/day3_morn' -alias d3a='cd /scratch/micro612w17_fluxod/username/day3_after' - - -# Flux Modules -module load python-anaconda2/latest +alias iflux='qsub -I -V -l nodes=1:ppn=4,pmem=4000mb,walltime=1:00:00:00 -q fluxod -l qos=flux -A micro612w18_fluxod' +alias wd='cd /scratch/micro612w18_fluxod/username/' +alias d1m='cd /scratch/micro612w18_fluxod/username/day1_morn' +alias d1a='cd /scratch/micro612w18_fluxod/username/day1_after' +alias d2m='cd /scratch/micro612w18_fluxod/username/day2_morn' +alias d2a='cd /scratch/micro612w18_fluxod/username/day2_after' +alias d3m='cd /scratch/micro612w18_fluxod/username/day3_morn' +alias d3a='cd /scratch/micro612w18_fluxod/username/day3_after' + + +#Flux Modules module load perl-modules -# Perl Libraries -export PERL5LIB=/scratch/micro612w17_fluxod/shared/bin/PAGIT/lib:/scratch/micro612w17_fluxod/shared/bin/vcftools_0.1.12b/perl:$PERL5LIB -export PERL5LIB=/scratch/micro612w17_fluxod/shared/perl_libs:$PERL5LIB - -# Bioinformatics Tools -export PATH=$PATH:/scratch/micro612w17_fluxod/shared/bin/mauve_snapshot_2015-02-13/linux-x64/ -export PATH=$PATH:/scratch/micro612w17_fluxod/shared/bin/blast/bin/ -export PATH=$PATH:/scratch/micro612w17_fluxod/shared/bin/vcftools_0.1.12b/perl/ -export PATH=$PATH:/scratch/micro612w17_fluxod/shared/bin/tabix-0.2.6/ -export PATH=$PATH:/scratch/micro612w17_fluxod/shared/bin/bwa-0.7.12/ -export PATH=$PATH:/scratch/micro612w17_fluxod/shared/bin/Trimmomatic/ -export PATH=$PATH:/scratch/micro612w17_fluxod/shared/bin/bcftools-1.2/ -export PATH=$PATH:/scratch/micro612w17_fluxod/shared/bin/samtools-1.2/ -export PATH=$PATH:/scratch/micro612w17_fluxod/shared/bin/sratoolkit/bin/ -export PATH=$PATH:/scratch/micro612w17_fluxod/shared/bin/Spades/bin/ -export PATH=$PATH:/scratch/micro612w17_fluxod/shared/bin/FastQC/ -export PATH=$PATH:/scratch/micro612w17_fluxod/shared/bin/GenomeAnalysisTK-3.3-0/ -export PATH=$PATH:/scratch/micro612w17_fluxod/shared/bin/picard-tools-1.130/ -export PATH=$PATH:/scratch/micro612w17_fluxod/shared/bin/qualimap_v2.1/ -export PATH=$PATH:/scratch/micro612w17_fluxod/shared/bin/vcftools_0.1.12b/bin/ -export PATH=$PATH:/scratch/micro612w17_fluxod/shared/bin/snpEff/ -export PATH=$PATH:/scratch/micro612w17_fluxod/shared/bin/PAGIT/ABACAS/ -export PATH=$PATH:/scratch/micro612w17_fluxod/shared/bin/blast-2.2.26/bin/ -export PATH=$PATH:/scratch/micro612w17_fluxod/shared/bin/quast/ -export PATH=$PATH:/scratch/micro612w17_fluxod/shared/bin/MUMmer3.23/ -export PATH=$PATH:/scratch/micro612w17_fluxod/shared/bin/fastq_screen_v0.5.2/ -export PATH=$PATH:/scratch/micro612w17_fluxod/shared/bin/prokka-1.11/bin/ -export PATH=$PATH:/scratch/micro612w17_fluxod/shared/bin/LS-BSR-master/ -export PATH=$PATH:/scratch/micro612w17_fluxod/shared/bin/bowtie2-2.2.6/ +#Perl Libraries +export PERL5LIB=/scratch/micro612w18_fluxod/shared/bin/PAGIT/lib:/scratch/micro612w18_fluxod/shared/bin/vcftools_0.1.12b/perl:$PERL5LIB +export PERL5LIB=/scratch/micro612w18_fluxod/shared/perl_libs:$PERL5LIB + +#Bioinformatics Tools +export PATH=$PATH:/scratch/micro612w18_fluxod/shared/bin/ncbi-blast-2.7.1+/bin/ +export PATH=$PATH:/scratch/micro612w18_fluxod/shared/bin/MultiQC/build/scripts-2.7/ +export PATH=$PATH:/scratch/micro612w18_fluxod/shared/bin/mauve_snapshot_2015-02-13/linux-x64/ +export PATH=$PATH:/scratch/micro612w18_fluxod/shared/bin/vcftools_0.1.12b/perl/ +export PATH=$PATH:/scratch/micro612w18_fluxod/shared/bin/tabix-0.2.6/ +export PATH=$PATH:/scratch/micro612w18_fluxod/shared/bin/bwa-0.7.12/ +export PATH=$PATH:/scratch/micro612w18_fluxod/shared/bin/Trimmomatic/ +export PATH=$PATH:/scratch/micro612w18_fluxod/shared/bin/bcftools-1.2/ +export PATH=$PATH:/scratch/micro612w18_fluxod/shared/bin/samtools-1.2/ +export PATH=$PATH:/scratch/micro612w18_fluxod/shared/bin/sratoolkit/bin/ +export PATH=$PATH:/scratch/micro612w18_fluxod/shared/bin/Spades/bin/ +export PATH=$PATH:/scratch/micro612w18_fluxod/shared/bin/FastQC/ +export PATH=$PATH:/scratch/micro612w18_fluxod/shared/bin/GenomeAnalysisTK-3.3-0/ +export PATH=$PATH:/scratch/micro612w18_fluxod/shared/bin/picard-tools-1.130/ +export PATH=$PATH:/scratch/micro612w18_fluxod/shared/bin/qualimap_v2.1/ +export PATH=$PATH:/scratch/micro612w18_fluxod/shared/bin/vcftools_0.1.12b/bin/ +export PATH=$PATH:/scratch/micro612w18_fluxod/shared/bin/snpEff/ +export PATH=$PATH:/scratch/micro612w18_fluxod/shared/bin/PAGIT/ABACAS/ +export PATH=$PATH:/scratch/micro612w18_fluxod/shared/bin/blast-2.2.26/bin/ +export PATH=$PATH:/scratch/micro612w18_fluxod/shared/bin/quast/ +export PATH=$PATH:/scratch/micro612w18_fluxod/shared/bin/MUMmer3.23/ +export PATH=$PATH:/scratch/micro612w18_fluxod/shared/bin/fastq_screen_v0.5.2/ +export PATH=$PATH:/scratch/micro612w18_fluxod/shared/bin/prokka-1.11/bin/ +export PATH=$PATH:/scratch/micro612w18_fluxod/shared/bin/LS-BSR-master/ +export PATH=$PATH:/scratch/micro612w18_fluxod/shared/bin/bowtie2-2.2.6/ +export PATH=$PATH:/scratch/micro612w18_fluxod/shared/bin/mcl-14-137/src/alien/oxygen/src/ ```
+Note: Replace "username" under alias shortcuts with your own umich "uniqname". In the text editor, nano, you can do this by + +- typing Ctrl + \ and You will then be prompted to type in your search string (here, username). +- Press return. Then you will be prompted to enter what you want to replace "username" with (here, your uniqname). +- Press return. Then press a to replace all incidences or y to accept each incidence one by one. + +You can also customize the alias name such as wd, d1m etc. catering to your own need and convenience. + The above environment settings will set various shortcuts such as "iflux" for entering interactive flux session, "wd" to navigate to your workshop directory, call necessary flux modules and perl libraries required by certain tools and finally sets the path for bioinformatics programs that we will run during the workshop. ->iii. Save the file and Source .bashrc file to make these changes permanent. +> ***iii. Save the file and Source .bashrc file to make these changes permanent.*** ``` @@ -111,45 +140,46 @@ source ~/.bashrc ``` ->iv. Check if the $PATH environment variable is updated +> ***iv. Check if the $PATH environment variable is updated*** ``` echo $PATH -# You will see a long list of paths that has been added to your $PATH variable +#You will see a long list of paths that has been added to your $PATH variable wd ``` -You should be in your workshop working directory that is /scratch/micro612w17_fluxod/username +You should be in your workshop working directory that is /scratch/micro612w18_fluxod/username - + -## Unix is your friend +Unix is your friend +------------------- +Up until now you’ve probably accessed sequence data from NCBI by going to the website, laboriously clicking around and finally finding and downloading the data you want. -In software carpentry, you learned working with shell and automating simple tasks using basic unix commands. Lets see how some of these commands can be employed in genomics analysis while exploring various file formats that we use in day to day analysis. For this session, we will try to explore three different types of bioinformatics file formats: +There are a lot of reasons that is not ideal: -fasta: used for representing either nucleotide or peptide sequences +- It’s frustrating and slow to deal with the web interface +- It can be hard to keep track of where the data came from and exactly which version of a sequence you downloaded +- Its not conducive to downloading lots of sequence data -gff: used for describing genes and other features of DNA, RNA and protein sequences +To download sequence data in Unix you can use a variety of commands (e.g. sftp, wget, curl). Here, we will use the curl command to download some genome assemblies from NCBI ftp location: -fastq: used for storing biological sequence / sequencing reads (usually nucleotide sequence) and its corresponding quality scores +- Go to your class home directory (use your wd shortcut!) -> Execute the following commands to copy files for this morning’s exercises to your home directory: +- Execute the following commands to copy files for this morning’s exercises to your home directory: ``` - -cp -r /scratch/micro612w17_fluxod/shared/data/day1_morn/ ./ +cp -r /scratch/micro612w18_fluxod/shared/data/day1_morn/ ./ cd day1_morn/ -# or +#or d1m @@ -157,27 +187,143 @@ ls ``` -> Question: In the homework assignment, you downloaded genome assembly fasta files and ran a shell script to count contigs. Now, lets say you want to find out the combined length of genome in each of these files. This can be achieved by running a short unix command piping together three extremely powerful unix programs: grep, sed and awk. The key to crafting the command is understanding the required features of fasta files, including: 1) each sequence is preceded by a fasta header that starts with ">", 2) the types of bases that a nucleotide sequence represents (A,T,G,C,N) and 3) that each line is seperated by a new line character ("\n"). To determine the total length of our genome assemblies, we will use grep to match only those lines that doesn't start with ">" (remember grep -v option to ignore lines), use sed to remove characters that match "N" or "n" which represents unknown bases and finally use awk to count the remaining characters. We can use unix pipe "|" to pass the output of one command to another for further processing. Lets start by counting the number of bases in Acinetobacter_baumannii.fna file +- Now get three genome sequences with the following commands: + +``` +curl ftp://ftp.ncbi.nlm.nih.gov/genomes/refseq/bacteria/Acinetobacter_baumannii/latest_assembly_versions/GCF_000018445.1_ASM1844v1/GCF_000018445.1_ASM1844v1_genomic.fna.gz > Acinetobacter_baumannii.fna.gz + +curl ftp://ftp.ncbi.nlm.nih.gov/genomes/refseq/bacteria/Klebsiella_pneumoniae/latest_assembly_versions/GCF_000220485.1_ASM22048v1/GCF_000220485.1_ASM22048v1_genomic.fna.gz > Klen_pneu.fna.gz + +curl ftp://ftp.ncbi.nlm.nih.gov/genomes/refseq/bacteria/Escherichia_coli/all_assembly_versions/GCF_000194495.1_ASM19449v2/GCF_000194495.1_ASM19449v2_genomic.fna.gz > E_coli.fna.gz + +``` + +- Decompress the compressed fasta file using gzip + +``` +gzip -d Acinetobacter_baumannii.fna.gz +gzip -d Klen_pneu.fna.gz +gzip -d E_coli.fna.gz +``` + +These files are genome assemblies in fasta format. Fasta files are a common sequence data format that is composed of alternating sequence headers (sequence names and comments) and their corresponding sequences. Of great importance, the sequence header lines must start with “>”. These genome assemblies have one header line for each contig in the assembly, and our goal will be to count the number of contigs/sequences. To do this we will string together two Unix commands: “grep” and “wc”. “grep” (stands for global regular expression print), is an extremely powerful pattern matching command, which we will use to identify all the lines that start with a “>”. “wc” (stand for word count) is a command for counting words, characters and lines in a file. To count the number of contigs in one of your fasta files enter: + + +``` +grep ">" E_coli.fna | wc -l +``` + +Try this command on other assemblies to see how many contigs they have + +Your first sequence analysis program!!! +--------------------------------------- + +OK, so now that we have a useful command, wouldn’t it be great to turn it into a program that you can easily apply to a large number of genome assemblies? Of course it would! So, now we are going to take out cool contig counting command, and put it in a shell script that applies it to all files in the desired directory. + + + +- Open “fasta_counter.sh” in pico or your favourite text editor and follow instructions for making edits so it will do what we want it to do + +- Run this script in day1_morn directory and verify that you get the correct results + +``` +bash fasta_counter.sh . +``` + +Plotting genomic coverage in R +------------------------------ + +Data visualization plays an important role in organizing, analyzing and interpreting large amount of omics data. R is one of the most basic and powerful tool for manipulating and visualizing these types of data. The following task will brush up some basic R plotting commands and help you visualize some complex omics data for interpretation. +One of the most common types of genomic analysis involves comparing the newly sequenced read data of an organism to your choice of reference organism genome. Mapping millions of reads generated in a sequencing experiment to the reference genome fasta file and interpreting various parameters can achieve this analysis. +One such parameter is validating how well your sequencing experiment performed and assessing the “uniformity” of coverage from whole-genome sequencing. Visualizing Sequencing coverage across the reference genome help us answer this question. Sequencing coverage describes the average number of reads that align to, or "cover," known reference bases. + +The input for this task is a comma-separated file, which contains average sequencing coverage information i.e average number of reads mapped to each 1000 base pairs in reference genome. You can find this input file in your day1_morn directory by the name, Ecoli_coverage_average_bed.csv + + + +Drag and drop this Ecoli_coverage_average_bed.csv to your local system using cyberduck. + +Now, Fire up R console or studio and import the file (Ecoli_coverage_average_bed.csv) using any type of data import functions in R (read.table, read.csv etc.) + +Hint: The file is comma-separated and contains header line (“bin,Average_coverage”) so use appropriate parameters while importing the file + +Once the data in file is imported into R object, you can plot the column Average_coverage as a time series plot to assess the coverage of your mapped reads across genome. + +Note: A time series plot is a graph that you can use to evaluate patterns and behavior in data over time. Here, we can employ the same plot to see the pattern i.e read depth/coverage at each 1000 bases (represented by bins columns where each bin represents Average number of reads mapped to each 1000 bases in reference genome) using the simplest R function for time series such as [plot.ts]( http://stat.ethz.ch/R-manual/R-devel/library/stats/html/plot.ts.html ) + +An example plot.ts plot for Ecoli_coverage_average_bed.csv is shown below for your reference. + +![alt tag](https://github.com/alipirani88/Comparative_Genomics/blob/master/_img/day1_morning/plot_1.png) + +For advance and more beautiful visualization, ggplot2 can be employed to display the same plot. An example ggplot2 plot for Ecoli_coverage_average_bed.csv is shown below for your reference. + +![alt tag](https://github.com/alipirani88/Comparative_Genomics/blob/master/_img/day1_morning/plot_2.png)
Solution - + ``` +x <- read.table("Ecoli_coverage_average_bed.csv", sep=",", header=TRUE) +plot.ts(x$Average_coverage, xlab="Genome Position(1000bp bins)", ylab="Average Read Depth", main="Ecoli Bed Coverage", col="blue") + +``` +
+ + +Power of Unix commands +---------------------- + +In software carpentry, you learned working with shell and automating simple tasks using basic unix commands. Lets see how some of these commands can be employed in genomics analysis while exploring various file formats that we use in day to day analysis. For this session, we will try to explore three different types of bioinformatics file formats: + +fasta: used for representing either nucleotide or peptide sequences + +gff: used for describing genes and other features of DNA, RNA and protein sequences + +fastq: used for storing biological sequence / sequencing reads (usually nucleotide sequence) and its corresponding quality scores + + +- Question: Previously, you downloaded genome assembly fasta files and ran a shell script to count contigs. Now, lets say you want to find out the combined length of genome in each of these files. This can be achieved by running a short unix command piping together two unix programs: grep and wc. The key to crafting the command is understanding the features of fasta files, + +> ***1) each sequence in fasta file is preceded by a fasta header that starts with ">",*** + +> ***2) the types of bases that a nucleotide sequence represents (A,T,G,C,N)*** + + +To determine the total length of our genome assemblies, we will use grep to match only those lines that doesn't start with ">" (remember grep -v option is used to ignore lines) and doesn't contain character "N". Then use wc command (stands for word count) to count the characters. We can use unix pipe "|" to pass the output of one command to another for further processing. Lets start by counting the number of bases in Acinetobacter_baumannii.fna file + +
+ Solution + + + +``` + +grep -v '^>' Acinetobacter_baumannii.fna | grep -v "N" | grep -v "n" | wc -m #Note: #- The sign "^" inside the grep pattern represents any pattern that starts with ">" and -v asks grep to ignore those lines. -#- Use "|" to pass these lines to sed. sed stands for stream editor and can be used to parse, transform and replace text. Here, we are removing the characters "N" or "n" and keeping only "A,T,G,C" bases -#- awk consists of three blocks: The first block (-F '\n') tells awk how each line is seperated from each other using a field seperator, the second block will keep counting characters in a line (using awk's default option "length") and save it in a variable "sum" and when it runs through all the lines in a stream, the third block will print the value of sum which represents total bases in a fasta file. +#- Use "|" to pass the output of one command to another. +#- -m parameter will show the character counts. Check wc help menu by typing "wc --help" on terminal to explore other parameters ```
+ Now run the same command on other fasta files in day1_morn directory. Try using a for loop. @@ -186,13 +332,13 @@ Now run the same command on other fasta files in day1_morn directory. Try using ``` -for i in *.fna; do grep -v '^>' $i | sed 's/[N,n]//g' | awk -F '\n' '{sum += length} END {print sum}'; done +for i in *.fna; do grep -v '^>' $i | grep -v "N" | grep -v "n" | wc -m; done ``` --- -> Exploring GFF files + +- Exploring GFF files The GFF (General Feature Format) format is a tab-seperated file and consists of one line per feature, each containing 9 columns of data. @@ -214,7 +360,7 @@ column 8: frame - One of '0', '1' or '2'. '0' indicates that the first base of t column 9: attribute - A semicolon-separated list of tag-value pairs, providing additional information about each feature such as gene name, product name etc. -> Use less to explore first few lines of a gff file sample.gff +- Use less to explore first few lines of a gff file sample.gff ``` @@ -227,7 +373,7 @@ You will notice that the GFF format follows version 3 specifications("##gff-vers You can press space bar on keyboard to read more lines and "q" key to exit less command. -> Question: Suppose, you want to find out the number of annotated features in a gff file. how will you achieve this using grep and wc? +- Question: Suppose, you want to find out the number of annotated features in a gff file. how will you achieve this using grep and wc?
Solution @@ -237,42 +383,26 @@ grep -v '^#' sample.gff | wc -l ```
-> Question: How about counting the number of rRNA features in a gff file using grep, awk and wc? Note: Awk is a very powerful utility for working with columns in a file. +- Question: How about counting the number of rRNA features in a gff(third column) file using grep, cut and wc? You can check the usage for cut by typing "cut --help"
Solution ``` -grep -v '^#' sample.gff | awk -F '\t' '{print $3}' | grep 'rRNA' | wc -l - -# Or number of CDS or tRNA features? - -grep -v '^#' sample.gff | awk -F '\t' '{print $3}' | grep 'CDS' | wc -l -grep -v '^#' sample.gff | awk -F '\t' '{print $3}' | grep 'tRNA' | wc -l - -# Note: In the above command, we are trying to search lines that doesn't starts with "#" and extracting feature information from third column. - -``` -
- -If for some reason you find awk daunting or too long, you can use "cut" command directly to extract specific columns. - -
- Solution - -``` cut -f 3 sample.gff | grep 'rRNA' | wc -l -# Or number of CDS or tRNA features? +#Or number of CDS or tRNA features? cut -f 3 sample.gff | grep 'CDS' | wc -l cut -f 3 sample.gff | grep 'tRNA' | wc -l +#Note: In the above command, we are trying to extract feature information from third column. + ```
-> Question: Try counting the number of features on a "+" or "-" strand. +- Question: Try counting the number of features on a "+" or "-" strand (column 7). Some more useful one-line unix commands for GFF files: [here](https://github.com/stephenturner/oneliners#gff3-annotations) @@ -285,12 +415,15 @@ Run the following command to print total number of reads in each file, total num ``` for i in Rush_KPC_266_*.gz; do zcat $i | awk 'BEGIN{OFS="\t"};((NR-2)%4==0){read=$1;total++;count[read]++;len+=length(read)}END{for(read in count){if(!max||count[read]>max) {max=count[read];maxRead=read};if(count[read]==1){unique++}};print total,unique,unique*100/total,maxRead,count[maxRead],count[maxRead]*100/total,len/total}'; done -# The above awk command reads every fourth record and calculates some basic fastq statistics. +#The above awk command reads every fourth record and calculates some basic fastq statistics. ``` +Now try running the above command using fastq_screen.fastq.gz as input. + You can find more of such super useful bash one-liners at Stephen Turner's github [page](https://github.com/stephenturner/oneliners). You can also use some pre-written unix utilities and tools such as [seqtk](https://github.com/lh3/seqtk), [bioawk](https://github.com/lh3/bioawk) and [fastx](http://hannonlab.cshl.edu/fastx_toolkit/) which comes in handy while extracting complex information from fasta/fastq/sam/bam files and are optimized to be insanely fast. -## Contamination Screening using [FastQ Screen](http://www.bioinformatics.babraham.ac.uk/projects/fastq_screen/) +Contamination Screening using [FastQ Screen](http://www.bioinformatics.babraham.ac.uk/projects/fastq_screen/) +-------------------------------------------- When running a sequencing pipeline, it is very important to make sure that your data matches appropriate quality threshold and are free from any contaminants. This step will help you make correct interpretations in downstream analysis and will also let you know if you are required to redo the experiment/library preparation or resequencing or remove contaminant sequences. @@ -304,13 +437,13 @@ We have already created the human, mouse and ecoli reference databases inside fa ``` -ls /scratch/micro612w17_fluxod/shared/bin/fastq_screen_v0.5.2/data/ +ls /scratch/micro612w18_fluxod/shared/bin/fastq_screen_v0.5.2/data/ ``` Note: You will learn creating reference databases in our afternoon session. ->i. Get an interactive cluster node to start running programs. Use the shortcut that we created in .bashrc file for getting into interactive flux session. +> ***i. Get an interactive cluster node to start running programs. Use the shortcut that we created in .bashrc file for getting into interactive flux session.*** How do you know if you are in interactive session?: you should see "username@nyx" in your command prompt @@ -325,56 +458,51 @@ d1m #or -cd /scratch/micro612w17_fluxod/username/day1_morn/ +cd /scratch/micro612w18_fluxod/username/day1_morn/ ``` ->ii. Lets run fastq_screen on fastq_screen.fastq.gz +> ***ii. Lets run fastq_screen on fastq_screen.fastq.gz*** ``` fastq_screen --subset 1000 --force --outdir ./ --aligner bowtie2 fastq_screen.fastq.gz #Note: We will screen only a subset of fastq reads against reference databases. To screen all the reads, change this argument to --subset 0 but will take long time to finish. (searching sequences against human or mouse genome is a time consuming step) -# Also Dont worry about "Broken pipe" warning. +#Also Dont worry about "Broken pipe" warning. ``` The above run will generate two types of output file: a screen report in text format "fastq_screen_screen.txt" and a graphical output "fastq_screen_screen.png" showing percentage of reads mapped to each reference genomes. ->iii. Download the fastq_screen graphical report to your home computer for inspection. Use scp if you find sftp annoying :) +> ***iii. Download the fastq_screen graphical report to your home computer for inspection.*** -``` -# Open a new terminal - -sftp username@flux-login.arc-ts.umich.edu -cd /scratch/micro612w17_fluxod/username/day1_morn/ -get fastq_screen_screen.png +Use scp command as shown below or use cyberduck. If you dont the file in cyberduck window, try refreshing it using the refresh button at the top. -# or Use scp if you find sftp annoying :) - -scp username@flux-xfer.arc-ts.umich.edu:/scratch/micro612w17_fluxod/username/day1_morn/fastq_screen_screen.png /path-to-local-directory/ +``` +scp username@flux-xfer.arc-ts.umich.edu:/scratch/micro612w18_fluxod/username/day1_morn/fastq_screen_screen.png /path-to-local-directory/ -# You can use ~/Desktop/ as your local directory path +#You can use ~/Desktop/ as your local directory path ``` Open fastq_screen_screen.png on your system. You will notice that the sample contain a significant amount of human reads; we should always remove these contaminants from our sample before proceeding to any type of microbial analysis. -## Quality Control using [FastQC](http://www.bioinformatics.babraham.ac.uk/projects/fastqc/ "FastQC homepage") +Quality Control using [FastQC](http://www.bioinformatics.babraham.ac.uk/projects/fastqc/ "FastQC homepage") +------------------------------ [[back to top]](https://github.com/alipirani88/Comparative_Genomics/blob/master/day1_morning/README.md) [[HOME]](https://github.com/alipirani88/Comparative_Genomics/blob/master/README.md) Now we will run FastQC on some sample raw data to assess its quality. FastQC is a quality control tool that reads in sequence data in a variety of formats(fastq, bam, sam) and can either provide an interactive application to review the results or create an HTML based report which can be integrated into any pipeline. It is generally the first step that you take upon receiving the sequence data from sequencing facility to get a quick sense of its quality and whether it exhibits any unusual properties (e.g. contamination or unexpected biological features) ->ii. In your day1_morn directory, create a new directory for saving FastQC results. +> ***i. In your day1_morn directory, create a new directory for saving FastQC results.*** ``` mkdir Rush_KPC_266_FastQC_results mkdir Rush_KPC_266_FastQC_results/before_trimmomatic ``` ->iii. Verify that FastQC is in your path by invoking it from command line. +> ***ii. Verify that FastQC is in your path by invoking it from command line.*** ``` fastqc -h @@ -382,7 +510,7 @@ fastqc -h FastQC can be run in two modes: "command line" or as a GUI (graphical user interface). We will be using command line version of it. ->iv. Run FastQC to generate quality report of sequence reads. +> ***iii. Run FastQC to generate quality report of sequence reads.*** ``` fastqc -o Rush_KPC_266_FastQC_results/before_trimmomatic/ Rush_KPC_266_1_combine.fastq.gz Rush_KPC_266_2_combine.fastq.gz --extract @@ -394,19 +522,12 @@ The summary.txt file in these directories indicates if the data passed different You can visualize and assess the quality of data by opening html report in a local browser. ->v. Exit your cluster node so you don’t waste cluster resources and $$$! +> ***iv. Exit your cluster node so you don’t waste cluster resources and $$$!*** ->vi. Download the FastQC report to your home computer to examine +> ***v. Download the FastQC html report to your home computer to examine using scp or cyberduck*** ``` -sftp username@flux-login.arc-ts.umich.edu -cd /scratch/micro612w17_fluxod/username/day1_morn/Rush_KPC_266_FastQC_results/before_trimmomatic/ -get Rush_KPC_266_1_combine_fastqc.html -get Rush_KPC_266_2_combine_fastqc.html - -or use scp. - -scp username@flux-xfer.arc-ts.umich.edu:/scratch/micro612w17_fluxod/username/day1_morn/Rush_KPC_266_FastQC_results/before_trimmomatic/*.html /path-to-local-directory/ +scp username@flux-xfer.arc-ts.umich.edu:/scratch/micro612w18_fluxod/username/day1_morn/Rush_KPC_266_FastQC_results/before_trimmomatic/*.html /path-to-local-directory/ ``` The analysis in FastQC is broken down into a series of analysis modules. The left hand side of the main interactive display or the top of the HTML report show a summary of the modules which were run, and a quick evaluation of whether the results of the module seem entirely normal (green tick), slightly abnormal (orange triangle) or very unusual (red cross). @@ -419,11 +540,12 @@ Next, lets check the overrepresented sequences graph and the kind of adapters th ![alt tag](https://github.com/alipirani88/Comparative_Genomics/blob/master/_img/day1_morning/2.png) -Check out [this](https://sequencing.qcfail.com/articles/loss-of-base-call-accuracy-with-increasing-sequencing-cycles/) for more detailed explaination as to why quality drops with increasing sequencing cycles. +- Check out [this](https://sequencing.qcfail.com/articles/loss-of-base-call-accuracy-with-increasing-sequencing-cycles/) for more detailed explaination as to why quality drops with increasing sequencing cycles. -> [A video FastQC walkthrough created by FastQC developers](https://www.youtube.com/watch?v=bz93ReOv87Y "FastQC video") +- [A video FastQC walkthrough created by FastQC developers](https://www.youtube.com/watch?v=bz93ReOv87Y "FastQC video") -## Quality Trimming using [Trimmomatic](http://www.usadellab.org/cms/?page=trimmomatic "Trimmomatic Homepage") +Quality Trimming using [Trimmomatic](http://www.usadellab.org/cms/?page=trimmomatic "Trimmomatic Homepage") +------------------------------------ [[back to top]](https://github.com/alipirani88/Comparative_Genomics/blob/master/day1_morning/README.md) [[HOME]](https://github.com/alipirani88/Comparative_Genomics/blob/master/README.md) @@ -435,42 +557,42 @@ For more information on how Trimmomatic tries to achieve this, Please refer [thi Now we will run Trimmomatic on these raw data to remove low quality reads as well as adapters. ->i. If the interactive session timed out, get an interactive cluster node again to start running programs and navigate to day1_morn directory. +> ***i. If the interactive session timed out, get an interactive cluster node again to start running programs and navigate to day1_morn directory.*** How to know if you are in interactive session: you should see "username@nyx" in your command prompt ``` iflux -cd /scratch/micro612w17_fluxod/username/day1_morn/ +cd /scratch/micro612w18_fluxod/username/day1_morn/ -# or +#or d1m ``` ->ii. Create these output directories in your day1_morn folder to save trimmomatic results +> ***ii. Create these output directories in your day1_morn folder to save trimmomatic results*** ``` mkdir Rush_KPC_266_trimmomatic_results ``` ->iii. Try to invoke trimmomatic from command line. +> ***iii. Try to invoke trimmomatic from command line.*** ``` -java -jar /scratch/micro612w17_fluxod/shared/bin/Trimmomatic/trimmomatic-0.33.jar –h +java -jar /scratch/micro612w18_fluxod/shared/bin/Trimmomatic/trimmomatic-0.33.jar –h ``` ->iv. Run the below trimmomatic commands on raw reads. +> ***iv. Run the below trimmomatic commands on raw reads.*** ``` -java -jar /scratch/micro612w17_fluxod/shared/bin/Trimmomatic/trimmomatic-0.33.jar PE Rush_KPC_266_1_combine.fastq.gz Rush_KPC_266_2_combine.fastq.gz Rush_KPC_266_trimmomatic_results/forward_paired.fq.gz Rush_KPC_266_trimmomatic_results/forward_unpaired.fq.gz Rush_KPC_266_trimmomatic_results/reverse_paired.fq.gz Rush_KPC_266_trimmomatic_results/reverse_unpaired.fq.gz ILLUMINACLIP:/scratch/micro612w17_fluxod/shared/bin/Trimmomatic/adapters/TruSeq3-PE.fa:2:30:10:8:true SLIDINGWINDOW:4:15 MINLEN:40 HEADCROP:0 +java -jar /scratch/micro612w18_fluxod/shared/bin/Trimmomatic/trimmomatic-0.33.jar PE Rush_KPC_266_1_combine.fastq.gz Rush_KPC_266_2_combine.fastq.gz Rush_KPC_266_trimmomatic_results/forward_paired.fq.gz Rush_KPC_266_trimmomatic_results/forward_unpaired.fq.gz Rush_KPC_266_trimmomatic_results/reverse_paired.fq.gz Rush_KPC_266_trimmomatic_results/reverse_unpaired.fq.gz ILLUMINACLIP:/scratch/micro612w18_fluxod/shared/bin/Trimmomatic/adapters/TruSeq3-PE.fa:2:30:10:8:true SLIDINGWINDOW:4:15 MINLEN:40 HEADCROP:0 ``` ![alt tag](https://github.com/alipirani88/Comparative_Genomics/blob/master/_img/day1_morning/trimm_parameters.png) -First, Trimmomatic searches for any matches between the reads and adapter sequences. Adapter sequences are stored in this directory of Trimmomatic tool: /scratch/micro612w17_fluxod/shared/bin/Trimmomatic/adapters/. Trimmomatic comes with a list of standard adapter fasta sequences such TruSeq, Nextera etc. You should use appropriate adapter fasta sequence file based on the illumina kit that was used for sequencing. You can get this information from your sequencing centre or can find it in FastQC html report (Section: Overrepresented sequences). +First, Trimmomatic searches for any matches between the reads and adapter sequences. Adapter sequences are stored in this directory of Trimmomatic tool: /scratch/micro612w18_fluxod/shared/bin/Trimmomatic/adapters/. Trimmomatic comes with a list of standard adapter fasta sequences such TruSeq, Nextera etc. You should use appropriate adapter fasta sequence file based on the illumina kit that was used for sequencing. You can get this information from your sequencing centre or can find it in FastQC html report (Section: Overrepresented sequences). Short sections (2 bp as determined by seed misMatch parameter) of each adapter sequences (contained in TruSeq3-PE.fa) are tested in each possible position within the reads. If it finds a perfect match, It starts searching the entire adapter sequence and scores the alignment. The advantage here is that the full alignment is calculated only when there is a perfect seed match which results in considerable efficiency gains. So, When it finds a match, it moves forward with full alignment and when the match reaches 10 bp determined by simpleClipThreshold, it finally trims off the adapter from reads. @@ -478,7 +600,7 @@ Quoting Trimmomatic: "'Palindrome' trimming is specifically designed for the case of 'reading through' a short fragment into the adapter sequence on the other end. In this approach, the appropriate adapter sequences are 'in silico ligated' onto the start of the reads, and the combined adapter+read sequences, forward and reverse are aligned. If they align in a manner which indicates 'read- through' i.e atleast 30 bp match, the forward read is clipped and the reverse read dropped (since it contains no new data)." ->v. Now create new directories in day1_morn folder and Run FastQC on these trimmomatic results. +> ***v. Now create new directories in day1_morn folder and Run FastQC on these trimmomatic results.*** ``` mkdir Rush_KPC_266_FastQC_results/after_trimmomatic @@ -486,17 +608,10 @@ mkdir Rush_KPC_266_FastQC_results/after_trimmomatic fastqc -o Rush_KPC_266_FastQC_results/after_trimmomatic/ Rush_KPC_266_trimmomatic_results/forward_paired.fq.gz Rush_KPC_266_trimmomatic_results/reverse_paired.fq.gz --extract ``` -Get these html reports to local system. +Get these html reports to your local system. ``` -sftp username@flux-login.arc-ts.umich.edu -cd /scratch/micro612w17_fluxod/username/day1_morn/Rush_KPC_266_FastQC_results/after_trimmomatic/ -get forward_paired.fq_fastqc.html -get reverse_paired.fq_fastqc.html - -or use scp - -scp username@flux-xfer.arc-ts.umich.edu:/scratch/micro612w17_fluxod/username/day1_morn/Rush_KPC_266_FastQC_results/after_trimmomatic/*.html /path-to-local-directory/ +scp username@flux-xfer.arc-ts.umich.edu:/scratch/micro612w18_fluxod/username/day1_morn/Rush_KPC_266_FastQC_results/after_trimmomatic/*.html /path-to-local-directory/ ``` ![alt tag](https://github.com/alipirani88/Comparative_Genomics/blob/master/_img/day1_morning/3.png) @@ -510,17 +625,17 @@ Quoting FastQC: This doesn't look very bad but you can remove the red cross sign by trimming these imbalanced head bases using HEADCROP:9 flag in the above command. ->vi. Lets Run trimmomatic again with headcrop 9 and save it in a different directory called Rush_KPC_266_trimmomatic_results_with_headcrop/ +> ***vi. Lets Run trimmomatic again with headcrop 9 and save it in a different directory called Rush_KPC_266_trimmomatic_results_with_headcrop/*** ``` mkdir Rush_KPC_266_trimmomatic_results_with_headcrop/ -time java -jar /scratch/micro612w17_fluxod/shared/bin/Trimmomatic/trimmomatic-0.33.jar PE Rush_KPC_266_1_combine.fastq.gz Rush_KPC_266_2_combine.fastq.gz Rush_KPC_266_trimmomatic_results_with_headcrop/forward_paired.fq.gz Rush_KPC_266_trimmomatic_results_with_headcrop/forward_unpaired.fq.gz Rush_KPC_266_trimmomatic_results_with_headcrop/reverse_paired.fq.gz Rush_KPC_266_trimmomatic_results_with_headcrop/reverse_unpaired.fq.gz ILLUMINACLIP:/scratch/micro612w17_fluxod/shared/bin/Trimmomatic/adapters/TruSeq3-PE.fa:2:30:10:8:true SLIDINGWINDOW:4:20 MINLEN:40 HEADCROP:9 +time java -jar /scratch/micro612w18_fluxod/shared/bin/Trimmomatic/trimmomatic-0.33.jar PE Rush_KPC_266_1_combine.fastq.gz Rush_KPC_266_2_combine.fastq.gz Rush_KPC_266_trimmomatic_results_with_headcrop/forward_paired.fq.gz Rush_KPC_266_trimmomatic_results_with_headcrop/forward_unpaired.fq.gz Rush_KPC_266_trimmomatic_results_with_headcrop/reverse_paired.fq.gz Rush_KPC_266_trimmomatic_results_with_headcrop/reverse_unpaired.fq.gz ILLUMINACLIP:/scratch/micro612w18_fluxod/shared/bin/Trimmomatic/adapters/TruSeq3-PE.fa:2:30:10:8:true SLIDINGWINDOW:4:20 MINLEN:40 HEADCROP:9 ``` Unix gem: time in above command shows how long a command takes to run? ->vii. Run FastQC 'one last time' on updated trimmomatic results with headcrop and check report on your local computer +> ***vii. Run FastQC 'one last time' on updated trimmomatic results with headcrop and check report on your local computer*** ``` mkdir Rush_KPC_266_FastQC_results/after_trimmomatic_headcrop/ @@ -528,14 +643,7 @@ fastqc -o Rush_KPC_266_FastQC_results/after_trimmomatic_headcrop/ --extract -f f ``` Download the reports again and see the difference. ``` -sftp username@flux-login.arc-ts.umich.edu -cd /scratch/micro612w17_fluxod/username/day1_morn/Rush_KPC_266_FastQC_results/after_trimmomatic_headcrop/ -get forward_paired.fq_fastqc.html -get reverse_paired.fq_fastqc.html - -or use scp - -scp username@flux-xfer.arc-ts.umich.edu:/scratch/micro612w17_fluxod/username/day1_morn/Rush_KPC_266_FastQC_results/after_trimmomatic_headcrop/*.html /path-to-local-directory/ +scp username@flux-xfer.arc-ts.umich.edu:/scratch/micro612w18_fluxod/username/day1_morn/Rush_KPC_266_FastQC_results/after_trimmomatic_headcrop/*.html /path-to-local-directory/ ``` The red cross sign disappeared! diff --git a/day2_afternoon/README.md b/day2_afternoon/README.md index 031b1f9..7a417bb 100644 --- a/day2_afternoon/README.md +++ b/day2_afternoon/README.md @@ -1,7 +1,9 @@ -# Day 2 Afternoon +Day 2 Afternoon +=============== [[HOME]](https://github.com/alipirani88/Comparative_Genomics/blob/master/README.md) -## High-throughput BLAST and pan-genome analysis +High-throughput BLAST and pan-genome analysis +--------------------------------------------- This morning we learned how to perform basic genome annotation and comparison using Prokka and ACT. Now we will up the ante and do some more sophisticated comparative genomics analyses! First, we will create custom BLAST databases to identify specific antibiotic resistance genes of interest in a set of genomes. @@ -15,76 +17,61 @@ Execute the following command to copy files for this afternoon’s exercises to ``` -cd /scratch/micro612w17_fluxod/username -cp -r /scratch/micro612w17_fluxod/shared/data/day2_after/ ./ +cd /scratch/micro612w18_fluxod/username + +or + +wd + +cp -r /scratch/micro612w18_fluxod/shared/data/day2_after/ ./ ``` -## Determine which genomes contain beta-lactamase genes +Determine which genomes contain beta-lactamase genes +---------------------------------------------------- [[back to top]](https://github.com/alipirani88/Comparative_Genomics/blob/master/day2_afternoon/README.md) [[HOME]](https://github.com/alipirani88/Comparative_Genomics/blob/master/README.md) -Before comparing full genomic content, lets start by looking for the presence of particular genes of interest. A. baumannii harbors an arsenal of resistance genes, and it would be interesting to know how particular resistance families vary among our 4 genomes. To accomplish this we will use the antibiotic resistance database ([ARDB](http://ardb.cbcb.umd.edu/)). In particular, we are going to extract a set of genes from ARDB that we are interested in probing our genomes for, and create a custom BLAST database to compare against. - -**Get beta-lactamase genes from [ARDB](http://ardb.cbcb.umd.edu/) database** +Before comparing full genomic content, lets start by looking for the presence of particular genes of interest. A. baumannii harbors an arsenal of resistance genes, and it would be interesting to know how particular resistance families vary among our 4 genomes. To accomplish this we will use the antibiotic resistance database ([ARDB](http://ardb.cbcb.umd.edu/)) and particularly beta-lactamase genes extracted from ARDB. These extracted genes can be found in file ardb_beta_lactam_genes.pfasta, which we will use to generate a Blast database. ->i. Run the custom perl script filter_fasta_file.pl to extract genes annotated as beta-lactamases from the full ARDB fasta file. +> ***i. Run makeblastdb on the file of beta-lactamases to create a BLAST database.*** -The script takes as input: +makeblastdb takes as input: -1) the ARDB database (resisGenes.pfasta), +1) an input fasta file of protein or nucleotide sequences (ardb_beta_lactam_genes.pfasta) and -2) a file containing terms to search the database for (fasta_file_keys) and - -3) an output file to contain the subset of sequences that match the text your searching for (ardb_beta_lactam_genes.pfasta). +2) a flag indicating whether to construct a protein or nucleotide database (in this case protein/ -dbtype prot). ``` +#change directory to day2_after +d2a -module load bioperl -cd scratch/micro612w17_fluxod/username/day2_after -perl filter_fasta_file.pl resisGenes.pfasta fasta_file_keys ardb_beta_lactam_genes.pfasta - -``` ->ii. Build BLAST database from fasta file - -Run formatdb on the file of beta-lactamases to create a BLAST database. -formatdb takes as input: - -1) a fasta file of protein or nucleotide sequences (ardb_beta_lactam_genes.pfasta) and - -2) a flag indicating whether to construct a protein or nucleotide database (in this case protein/ -p T). +makeblastdb -in ardb_beta_lactam_genes.pfasta -dbtype prot -``` -formatdb -i ardb_beta_lactam_genes.pfasta -p T ``` ->iii. BLAST A. baumannii proteins against our custom beta-lactamase database +> ***ii. BLAST A. baumannii protein sequences against our custom beta-lactamase database.*** Run BLAST! The input parameters are: -1) the type of blast to use (-p blastp), - -2) query sequences (-i Abau_all.pfasta), +1) query sequences (-query Abau_all.pfasta), -3) the database to search against (-d ardb_beta_lactam_genes.pfasta), +2) the database to search against (-db ardb_beta_lactam_genes.pfasta), -4) the name of a file to store your results (-o bl_blastp_results), +3) the name of a file to store your results (-out bl_blastp_results), -5) output format (-m 8), +4) output format (-outfmt 6), -6) e-value cutoff (-e 1e-20), +5) e-value cutoff (-evalue 1e-20), -7) number of database sequences to return (-v 1) and +6) number of database sequences to return (-max_target_seqs 1) -8) number of database sequences to show alignment for (-b 1). ``` - -blastall -p blastp -i Abau_all.pfasta -d ardb_beta_lactam_genes.pfasta -o bl_blastp_results -m 8 -e 1e-20 -v 1 -b 1 - +blastp -query Abau_all.pfasta -db ardb_beta_lactam_genes.pfasta -out bl_blastp_results -outfmt 6 -evalue 1e-20 -max_target_seqs 1 ``` Use less to look at bl_blastp_results. @@ -93,362 +80,370 @@ Use less to look at bl_blastp_results. less bl_blastp_results ``` -> Question: Experiment with the –m parameter, which controls different output formats that BLAST can produce. +- Question: Experiment with the –outfmt parameter, which controls different output formats that BLAST can produce. +- Question: Determine which Enterococcus genomes contain vancomycin resistance genes. To do this you will need to: i) create a protein BLAST database for ardb_van.pfasta, ii) concetenate the genomes sequences in the .fasta files and iii) use blastx to BLAST nucleotide genomes against a protein database ->iv. Repeat steps i-iii for a different resistance gene class +Identification of antibiotic resistance genes with [ARIBA](https://github.com/sanger-pathogens/ariba) directly from paired end reads +---------------------------------------------------------- +[[back to top]](https://github.com/alipirani88/Comparative_Genomics/blob/master/day2_afternoon/README.md) +[[HOME]](https://github.com/alipirani88/Comparative_Genomics/blob/master/README.md) -Use nano to change fasta_file_keys to contain phrase you’d like to search for (e.g. acetyltransferase, carbapenemase) +ARIBA, Antimicrobial Resistance Identification By Assembly is a tool that identifies antibiotic resistance genes by running local assemblies. The input is a FASTA file of reference sequences (can be a mix of genes and noncoding sequences) and paired sequencing reads. ARIBA reports which of the reference sequences were found, plus detailed information on the quality of the assemblies and any variants between the sequencing reads and the reference sequences. -Run filter_fasta_file.pl to extract genes annotated with your resistance of interest (ROI) from the full ARDB fasta file +ARIBA is compatible with various databases and also contains an utility to download different databases such as: argannot, card, megares, plasmidfinder, resfinder, srst2_argannot, vfdb_core. Today, we will be working with the [card](https://card.mcmaster.ca/) database, which has been downloaded and placed in /scratch/micro612w18_fluxod/shared/out.card.prepareref/ directory. + -**BLAST!** - +> ***i. Run ARIBA on input paired-end fastq reads for resistance gene identification.*** -``` -blastall -p blastp -i Abau_all.pfasta -d ardb_ROI_genes.pfasta -o bl_blastp_results -m 8 -e 1e-20 -v 1 -b 1 -``` +The fastq reads are placed in Abau_genomes_fastq directory. Enter interactive flux session, change directory to day2_after workshop directory and run the below four commands to start ARIBA jobs in background. -## Identification of antibiotic resistance genes with [LS-BSR](https://github.com/jasonsahl/LS-BSR) and the [ARDB](http://ardb.cbcb.umd.edu/) database -[[back to top]](https://github.com/alipirani88/Comparative_Genomics/blob/master/day2_afternoon/README.md) -[[HOME]](https://github.com/alipirani88/Comparative_Genomics/blob/master/README.md) + -Next, instead of looking at resistance classes one at a time, lets look at them all in one shot! To do this we will use [LS-BSR](https://peerj.com/articles/332/), which essentially is just a wrapper for doing the same sort of BLASTing we just did in the previous step. BSR stands for BLAST Score Ratio, which refers to what the output is. In particular, for each query gene LS-BSR returns the ratio between: 1) the BLAST score of best hit in target genome and 2) BLAST score of query gene against itself. So, the output is a query by target genome matrix, where the values are between 0 and 1, and indicate the strength of a given queries BLAST hit in the target genome. +``` +iflux +cd /scratch/micro612w18_fluxod/username/day2_after ->i. Create a non-redundant list of resistance genes +or -There is a lot of redundancy in the ARDB (e.g. lots of closely related genes), which would make the output difficult to sort through. Here, we use usearch to select representatives from the database and create a non-redundant gene set! +d2a -We are running usearch with the following parameters: -1) the clustering algorithm (-cluster_fast), -2) the files of sequences you want to cluster (resisGenes.pep), -3) the minimum sequence identity to be included in an existing cluster (-id 0.8), -4) an output fasta file with reperesentatives (centroids) of each sequence cluster (-centroids resisGenes_nr.pep) and -5) an output file describing the results of the clustering (-uc resisGenes.uc). +#Load dependency - +module load cd-hit -``` +#ARIBA commands -> Make sure you are in day2_after directory +/nfs/esnitkin/bin_group/anaconda3/bin/ariba run --force /scratch/micro612w18_fluxod/shared/out.card.prepareref/ Abau_genomes_fastq/AbauA_genome.1.fastq.gz Abau_genomes_fastq/AbauA_genome.2.fastq.gz AbauA_genome & -cd scratch/micro612w17_fluxod/username/day2_after +/nfs/esnitkin/bin_group/anaconda3/bin/ariba run --force /scratch/micro612w18_fluxod/shared/out.card.prepareref/ Abau_genomes_fastq/AbauB_genome.1.fastq.gz Abau_genomes_fastq/AbauB_genome.2.fastq.gz AbauB_genome & -> Load relevant Modules +/nfs/esnitkin/bin_group/anaconda3/bin/ariba run --force /scratch/micro612w18_fluxod/shared/out.card.prepareref/ Abau_genomes_fastq/AbauC_genome.1.fastq.gz Abau_genomes_fastq/AbauC_genome.2.fastq.gz AbauC_genome & -module load usearch -module load prodigal +/nfs/esnitkin/bin_group/anaconda3/bin/ariba run --force /scratch/micro612w18_fluxod/shared/out.card.prepareref/ Abau_genomes_fastq/ACICU_genome.1.fastq.gz Abau_genomes_fastq/ACICU_genome.2.fastq.gz ACICU_genome & -> Run usearch to select representatives from the database and create a non-redundant gene set! +``` -usearch -cluster_fast resisGenes.pep -id 0.8 -centroids resisGenes_nr.pep -uc resisGenes.uc +The "&" in the above commands(at the end) is a little unix trick to run commands in background. You can run multiple commands in background and make full use of parallel processing. You can check the status of these background jobs by typing: +``` +jobs ``` ->ii. Run LS-BSR +> ***ii. Run ARIBA summary function to generate a summary report.*** -Change your directory to day2_after: +ARIBA has a summary function that summarises the results from one or more sample runs of ARIBA and generates an output report with various level of information determined by -preset parameter. The parameter "-preset minimal" will generate a minimal report showing only the presence/absence of resistance genes whereas "-preset all" will output all the extra information related to each database hit such as reads and reference sequence coverage, variants and their associated annotations(if the variant confers resistance to an Antibiotic) etc. ``` -> Make sure you are in day2_after directory +/nfs/esnitkin/bin_group/anaconda3/bin/ariba summary --preset minimal Abau_genomes_ariba_minimal_results *_genome/report.tsv -cd /scratch/micro612w17_fluxod/username/day2_after/ +/nfs/esnitkin/bin_group/anaconda3/bin/ariba summary --preset all Abau_genomes_ariba_all_results *_genome/report.tsv ``` -Run LS-BSR (it will take a few minutes)! - -The input parameters are: a directory with your genomes (-d Abau_genomes) and a fasta file of query genes (-g resisGenes_nr.pep) +ARIBA summary generates three output: -``` +1. Abau_genomes_ariba*.csv file that can be viewed in your favourite spreadsheet program. +2. Abau_genomes_ariba*.phandango.{csv,tre} that allow you to view the results in [Phandango](http://jameshadfield.github.io/phandango/#/). They can be drag-and-dropped straight into Phandango. -python /scratch/micro612w17_fluxod/shared/bin/LS-BSR-master/ls_bsr.py -d Abau_genomes/ -g resisGenes_nr.pep +Lets copy this phandango files Abau_genomes_ariba_minimal_results.phandango.csv and Abau_genomes_ariba_minimal_results.phandango.tre to the local system using cyberduck or scp +``` +scp username\@flux-xfer.arc-ts.umich.edu:/scratch/micro612w18_fluxod/username/day2_after/*minimal_results.phandango* ~/Desktop/ ``` ->iii. Download LS-BSR output matrix to your own computer for analysis in R +Drag and drop these two files on [Phandango](http://jameshadfield.github.io/phandango/#/) website. What types of resistance genes do you see in these Acinetobacter genomes? This [review](http://aac.asm.org/content/55/3/947.full) may help interpret. -Use scp to get LS-BSR output onto your laptop +> ***iii. Explore full ARIBA matrix in R*** -``` +- Now, Fire up R console or studio and read ariba full report "Abau_genomes_ariba_all_results.csv" -> Dont forget to change username in the below command +``` +ariba_full = read.csv(file = 'Abau_genomes_ariba_all_results.csv', row.names = 1) +``` -scp username@flux-xfer.arc-ts.umich.edu:/scratch/micro612w17_fluxod/username/day2_after/bsr_matrix_values.txt ~/Desktop +- Subset to get description for each gene +``` +ariba_full_asm = ariba_full[, grep('assembled',colnames(ariba_full))] ``` -Fire up RStudio and read the matrix: +- Make binary for plotting purposes +``` +ariba_full_asm[,] = as.numeric(ariba_full_asm != 'no') ``` -> Make sure you have copied bsr_matrix_values.txt file to your desktop. If not then give the path where bsr_matrix_values.txt is located. - -bsr_mat = read.table('~/Desktop/bsr_matrix_values.txt', sep = "\t", row.names = 1, header = TRUE, quote = "") +- Make a heatmap! ``` +heatmap(as.matrix(ariba_full_asm), scale = "none", col= c('black', 'red'), margins = c(10,5), cexRow = 0.75) +``` + +Perform pan-genome analysis with [Roary](https://sanger-pathogens.github.io/Roary/) +---------------------------------------- -Use head, str, dim, etc. to explore the matrix you read in +Roary is a pan genome pipeline, which takes annotated assemblies in GFF3 format and calculates the pan genome. The pan-genome is just a fancy term for the full complement of genes in a set of genomes. -iv. Make a heatmap of all the LS-BSR results +The way Roary does this is by: +1) Roary gets all the coding sequences from GFF files, convert them into protein, and create pre-clusters of all the genes, +2) Then, using BLASTP and MCL, Roary will create gene clusters, and check for paralogs. and +3) Finally, Roary will take every isolate and order them by presence/absence of genes. -Install and load the R library "heatmap3" +> ***i. Generate pan-genome matrix using Roary and GFF files*** -Make a heatmap of the complete LS-BSR matrix. Check out the help file to see what the input parameters do, and behold the plethora of other options to customize your heatmaps! +Make sure you are on an interactive node, as this will be even more computationally intensive! +``` +iflux ``` -heatmap3(bsr_mat, , scale = "none", distfun = function(x){dist(x, method = "manhattan")}, margin = c(10,10), cexCol = 0.85, cexRow = 0.5) +Change your directory to day2_after ``` +> Make sure to change username with your uniqname ->v. Subset LS-BSR data to only include genes present in at least one genome +cd /scratch/micro612w18_fluxod/username/day2_after/ -From the previous step you should have discerned that full LS-BSR matrix is too large to get a useful visualization, so we need to subset it. -Lets first subset the matrix to focus only on genes present in at least one of our genomes. -Values in the LS-BSR matrix are between 0 and 1, and represent the sequence identity to the query gene. -We will arbitrarily say that if a protein have a BLAST score ratio of less then 0.5, then its absent. +or -``` - -bsr_mat_subset = bsr_mat[rowSums(bsr_mat > 0.5) > 0,] +d2a ``` -Make a heatmap of your subset (much better!) +Load all the required dependencies and run roary on GFF files placed in Abau_genomes_gff folder. ``` +module load samtools +module load bedtools2 +module load cd-hit +module load ncbi-blast +module load mcl +module load parallel +module load mafft +module load fasttree +module load perl-modules +module load R +module load roary -heatmap3(bsr_mat_subset, , scale = "none", distfun = function(x){dist(x, method = "manhattan")}, margin = c(10,10), cexCol = 0.85, cexRow = 0.5) - +#Run roary +roary -p 4 -f Abau_genomes_roary_output -r -n -v Abau_genomes_gff/*.gff ``` ->vi. Determine the total number of resistance genes present in each genome +The above roary command will run pan-genome pipeline on gff files placed in Abau_genomes_gff(-v) using 4 threads(-p), save the results in an output directory Abau_genomes_roary_output(-f), generate R plots using .Rtab output files and align core genes(-n) -We use colSums to count the number of genes with greater than 50% identity to the query +Change directory to Abau_genomes_roary_output to explore the results. ``` -colSums(bsr_mat > 0.5) -``` +cd Abau_genomes_roary_output -How does the total number of genes vary by altering the percent identity threshold? - ->vii. Determine the total number of bla genes in each genome +ls +``` -Next, we will use grepl to pull out genes of interest +Output files: -``` -bla_bsr_mat = bsr_mat[grepl('beta-lactamase', row.names(bsr_mat)) ,] -``` +1. summary_statistics.txt: This file is an overview of your pan genome analysis showing the number of core genes(present in all isolates) and accessory genes(genes absent from one or more isolates or unique to a given isolate). -Print out to screen and make a heatmap to explore +2. gene_presence_absence.csv: This file contain detailed information about each gene including their annotations which can be opened in any spreadsheet software to manually explore the results. It contains plethora of information such as gene name and their functional annotation, whether a gene is present in a genome or not, minimum/maximum/Average sequence length etc. ->viii. Subset the full matrix to look at genes that are present in only one genome +3. gene_presence_absence.Rtab: This file is similar to the gene_presence_absence.csv file, however it just contains a simple tab delimited binary matrix with the presence and absence of each gene in each sample. It can be easily loaded into R using the read.table function for further analysis and plotting. The first row is the header containing the name of each sample, and the first column contains the gene name. A 1 indicates the gene is present in the sample, a 0 indicates it is absent. -Get genes present in only one genome +4. core_gene_alignment.aln: a multi-FASTA alignment of all of the core genes that can be used to generate a phylogenetic tree. + -Print out to screen and make a heatmap to explore - -## Perform pan-genome analysis with LS-BSR -[[back to top]](https://github.com/alipirani88/Comparative_Genomics/blob/master/day2_afternoon/README.md) -[[HOME]](https://github.com/alipirani88/Comparative_Genomics/blob/master/README.md) +> ***ii. Explore pan-genome matrix gene_presence_absence.csv and gene_presence_absence.Rtab using R*** -As a final BLASTing exercise we will use LS-BSR to explore the pan-genome of our A. baumannii. The pan-genome is just a fancy term for the full complement of genes in a set of genomes. -The way LS-BSR does this is by: -1) applying prodigal to identify protein coding genes in input genomes, -2) applying usearch to create non-redundant set of genes and -3) BLASTing the set of non-redundant genes against the genomes. + ->i. Get pan-genome matrix and transfer annotation +**Modify gene_presence_absence.Rtab file to include annotations** -Make sure you are on an interactive node, as this will be even more computationally intensive! +- Get column names from gene_presence_absence.csv file ``` -iflux +head -n1 gene_presence_absence.csv | tr ',' '\n' | cat --number ``` - -Change your directory to day2_after +- Pull columns of interest ``` - -> Make sure to change username with your uniqname - -cd /scratch/micro612w17_fluxod/username/day2_after/ - +cut -d "," -f 3 gene_presence_absence.csv | tr '"' '_' > gene_presence_absence_annot.csv ``` - -Run LS-BSR! The –u parameter is just a path to where usearch lives on flux. -If you started a new interactive job since you ran LS-BSR, you will need to re-load the required modules for LS-BSR listed above. +- Paste it into pan-genome matrix ``` - -cd scratch/micro612w17_fluxod/username/day2_after - -python /scratch/micro612w17_fluxod/shared/bin/LS-BSR-master/ls_bsr.py -d Abau_genomes/ -u /sw/med/centos7/usearch/8.1/usearch - +paste -d "" gene_presence_absence_annot.csv gene_presence_absence.Rtab > gene_presence_absence_wannot.Rtab ``` -Run the custom perl script transfer_annotations.pl to add annotations to your BSR matrix. The output of this script will be bsr_matrix_values_annot.txt +- Check gene_presence_absence_wannot.Rtab file ``` -perl transfer_annotations.pl Abau_ECII_PC.fasta Abau_ECII_PC.NR.annot bsr_matrix_values.txt consensus.fasta +less gene_presence_absence_wannot.Rtab ``` ->ii. Read matrix into R and create heatmap - -Use scp to get LS-BSR output onto your laptop +**Read matrix into R, generate exploratory plots and query pan-genome** -``` +Use scp or cyberduck to get gene_presence_absence_wannot.Rtab onto your laptop. -> Make sure to change username with your uniqname +> ***i. Prepare and clean data*** -scp username@flux-xfer.arc-ts.umich.edu:/scratch/micro612w17_fluxod/username/day2_after/bsr_matrix_values_annot.txt ~/Desktop +- Fire up RStudio and read gene_presence_absence_wannot.Rtab into matrix. ``` - -Fire up RStudio and read the matrix in - +pg_matrix = read.table('gene_presence_absence_wannot.Rtab', sep = "\t", quote = "", row.names = 1, skip = 1) ``` -bsr_mat_PG = read.table('~/Desktop/bsr_matrix_values_annot.txt', sep = "\t", row.names = 1, header = TRUE, quote = "") +- Add column names back +``` +colnames(pg_matrix) = c('ACICU', 'AbauA', 'AbauB', 'AbauC') ``` -Use head, str, dim, etc. to explore the matrix you read in -Make a heatmap for the full matrix +- Use head, str, dim, etc. to explore the matrix. -``` +> ***ii. Generate exploratory heatmaps.*** -heatmap3(as.matrix(bsr_mat_PG), , scale = "none", distfun = function(x){dist(x, method = "manhattan")}, margin = c(10,10), cexCol = 0.85, cexRow = 0.5) +- Make a heatmap for the full matrix +``` +heatmap(as.matrix(pg_matrix), , scale = "none", distfun = function(x){dist(x, method = "manhattan")}, margin = c(10,10), cexCol = 0.85, cexRow = 0.5, col= c('black', 'red')) ``` -Make a heatmap for variable genes (present in at least one, but not all of the genomes +- Make a heatmap for variable genes (present in at least one, but not all of the genomes) ``` -bsr_mat_PG_subset = bsr_mat_PG[rowSums(bsr_mat_PG > 0.4) > 0 & rowSums(bsr_mat_PG > 0.4) < 4 ,] -heatmap3(as.matrix(bsr_mat_PG_subset), , scale = "none", distfun = function(x){dist(x, method = "manhattan")}, margin = c(10,10), cexCol = 0.85, cexRow = 0.5) +pg_matrix_subset = pg_matrix[rowSums(pg_matrix > 0) > 0 & rowSums(pg_matrix > 0) < 4 ,] +heatmap(as.matrix(pg_matrix_subset), , scale = "none", distfun = function(x){dist(x, method = "manhattan")}, margin = c(10,10), cexCol = 0.85, cexRow = 0.5, col= c('black', 'red')) ``` ->iii. Which genomes are most closely related based upon shared gene content? +> ***iii. Query pan-genome*** + +- Which genomes are most closely related based upon shared gene content? We will use the outer function to determine the number of genes shared by each pair of genomes. + + + Look at the help page for outer to gain additional insight into how this is working. ``` -outer(1:4,1:4, FUN = Vectorize(function(x,y){sum(bsr_mat_PG_subset[,x] > 0.4 & bsr_mat_PG_subset[,y] > 0.4)})) +help(outer) +``` + +``` +outer(1:4,1:4, FUN = Vectorize(function(x,y){sum(pg_matrix_subset[,x] > 0 & pg_matrix_subset[,y] > 0)})) ``` ->iv. What is the size of the core genome? +- What is the size of the core genome? Lets first get an overview of how many genes are present in different numbers of genomes (0, 1, 2, 3 or 4) by plotting a histogram. Here, we combine hist with rowSums to accomplish this. ``` -hist(rowSums(bsr_mat_PG > 0.4)) +hist(rowSums(pg_matrix > 0), col="red") ``` Next, lets figure out how big the core genome is (e.g. how many genes are common to all of our genomes)? ``` -sum(rowSums(bsr_mat_PG > 0.4) == 4) +sum(rowSums(pg_matrix > 0) == 4) ``` ->v. What is the size of the accessory genome? +- What is the size of the accessory genome? Lets use a similar approach to determine the size of the accessory genome (e.g. those genes present in only a subset of our genomes). ``` -sum(rowSums(bsr_mat_PG > 0.4) < 4 & rowSums(bsr_mat_PG > 0.4) > 0) +sum(rowSums(pg_matrix > 0) < 4 & rowSums(pg_matrix > 0) > 0) ``` ->vi. What types of genes are unique to a given genome? +- What types of genes are unique to a given genome? -So far we have quantified the core and accessory genome, now lets see if we can get an idea of what types of genes are core vs. accessory. Lets start by looking at those genes present in only a single genome. What do you notice about these genes? +So far we have quantified the core and accessory genome, now lets see if we can get an idea of what types of genes are core vs. accessory. Lets start by looking at those genes present in only a single genome. ``` -row.names(bsr_mat_PG[rowSums(bsr_mat_PG > 0.4) == 1,]) +row.names(pg_matrix[rowSums(pg_matrix > 0) == 1,]) ``` -vii. What is the number of hypothetical genes in core vs. accessory genome? - -Looking at unqiue genes we see that many are annotated as “hypothetical”, indicating that the sequence looks like a gene, but has no detectable homology with a functionally characterized gene. Determine the fraction of “hypothetical” genes in unique vs. core. Why does this make sense? +What do you notice about these genes? -``` +- What is the number of hypothetical genes in core vs. accessory genome? -sum(grepl("hypothetical" , row.names(bsr_mat_PG[rowSums(bsr_mat_PG > 0.4) == 1,]))) / sum(rowSums(bsr_mat_PG > 0.4) == 1) +Looking at unique genes we see that many are annotated as “hypothetical”, indicating that the sequence looks like a gene, but has no detectable homology with a functionally characterized gene. -sum(grepl("hypothetical" , row.names(bsr_mat_PG[rowSums(bsr_mat_PG > 0.4) == 4,]))) / sum(rowSums(bsr_mat_PG > 0.4) == 4) +Determine the fraction of “hypothetical” genes in unique vs. core. ``` +sum(grepl("hypothetical" , row.names(pg_matrix[rowSums(pg_matrix > 0) == 1,]))) / sum(rowSums(pg_matrix > 0) == 1) +sum(grepl("hypothetical" , row.names(pg_matrix[rowSums(pg_matrix > 0) == 4,]))) / sum(rowSums(pg_matrix > 0) == 4) +``` + +Why does this make sense? -## Perform genome comparisons with [ACT](http://www.sanger.ac.uk/science/tools/artemis-comparison-tool-act) +Perform genome comparisons with [ACT](http://www.sanger.ac.uk/science/tools/artemis-comparison-tool-act) +------------------------------------- [[back to top]](https://github.com/alipirani88/Comparative_Genomics/blob/master/day2_afternoon/README.md) [[HOME]](https://github.com/alipirani88/Comparative_Genomics/blob/master/README.md) In the previous exercises we were focusing on gene content, but losing the context of the structural variation underlying gene content variation (e.g. large insertions and deletions). Here we will use ACT to compare two of our genomes (note that you can use ACT to compare more than two genomes if desired). -i. Create ACT alignment file with BLAST +> ***i. Create ACT alignment file with BLAST*** As we saw this morning, to compare genomes in ACT we need to use BLAST to create the alignments. We will do this on flux. ``` -cd scratch/micro612w17_fluxod/username/day2_after +cd scratch/micro612w18_fluxod/username/day2_after blastall -p blastn -i ./Abau_genomes/AbauA_genome.fasta -d ./Abau_BLAST_DB/ACICU_genome.fasta -m 8 -e 1e-20 -o AbauA_vs_ACICU.blast ``` ->ii. Read in genomes, alignments and annotation files +> ***ii. Read in genomes, alignments and annotation files*** -Use sftp to get ACT files onto your laptop +Use scp or cyberduck to transfer Abau_ACT_files folder onto your laptop -``` -cd ~/Desktop (or wherever your desktop is) -mkdir Abau_ACT -cd Abau_ACT -sftp username@flux-login.arc-ts.umich.edu -cd /scratch/micro612w17_fluxod/username/day2_after -get Abau_genomes/AbauA_genome.fasta -get Abau_genomes/ACICU_genome.fasta -get AbauA_vs_ACICU.blast -get Abau_ACT_files/AbauA_genome_gene.gff -get Abau_ACT_files/ACICU_genome_gene.gff +1. Abau_genomes/AbauA_genome.fasta +2. Abau_genomes/ACICU_genome.fasta +3. AbauA_vs_ACICU.blast +4. Abau_ACT_files/AbauA_genome_gene.gff +5. Abau_ACT_files/ACICU_genome_gene.gff -``` ->iii. Explore genome comparison and features of ACT +> ***iii. Explore genome comparison and features of ACT*** Read in genomes and alignment into ACT @@ -472,7 +467,8 @@ Go to File -> AbauA_genome.fasta -> Read an entry file = AbauA_genome_gene.gff ``` Play around in ACT to gain some insight into the sorts of genes present in large insertion/deletion regions. -See if you can find: +See if you can find: + 1) differences in phage content, 2) membrane biosynthetic gene cluster variation and 3) antibiotic resistance island variation. diff --git a/day2_morning/README.md b/day2_morning/README.md index b7f39cf..6e2c678 100644 --- a/day2_morning/README.md +++ b/day2_morning/README.md @@ -1,4 +1,5 @@ -# Day 2 Morning +Day 2 Morning +============= [[HOME]](https://github.com/alipirani88/Comparative_Genomics/blob/master/README.md) On day 1 we worked through a pipeline to map short-read data to a pre-existing assembly and identify single-nucleotide variants (SNVs) and small insertions/deletions. However, what this sort of analysis misses is the existence of sequence that is not present in your reference. Today we will tackle this issue by assembling our short reads into larger sequences, which we will then analyze to characterize the functions unique to our sequenced genome. @@ -10,20 +11,21 @@ Execute the following command to copy files for this morning’s exercises to yo wd -# or +#or -cd /scratch/micro612w17_fluxod/username +cd /scratch/micro612w18_fluxod/username -> Note: Check if you are in your home directory(/scratch/micro612w17_fluxod/username) by executing 'pwd' in terminal. 'pwd' stands for present working directory and it will display the directory you are in. +> Note: Check if you are in your home directory(/scratch/micro612w18_fluxod/username) by executing 'pwd' in terminal. 'pwd' stands for present working directory and it will display the directory you are in. pwd > Note: Copy files for this morning's exercise in your home directory. -cp -r /scratch/micro612w17_fluxod/shared/data/day2_morn ./ +cp -r /scratch/micro612w18_fluxod/shared/data/day2_morn ./ ``` -## Genome Assembly using [Spades](http://bioinf.spbau.ru/spades) Pipeline +Genome Assembly using [Spades](http://bioinf.spbau.ru/spades) Pipeline +------------------------------ [[back to top]](https://github.com/alipirani88/Comparative_Genomics/blob/master/day2_morning/README.md) [[HOME]](https://github.com/alipirani88/Comparative_Genomics/blob/master/README.md) @@ -33,7 +35,7 @@ There are a wide range of tools available for assembly of microbial genomes. The Here we will use the Spades assembler with default parameters. Because genome assembly is a computationally intensive process, we will submit our assembly jobs to the cluster, and move ahead with some pre-assembled genomes, while your assemblies are running. ->i. Create directory to hold your assembly output. +> ***i. Create directory to hold your assembly output.*** Create a new directory for the spades output in your day2_morn folder @@ -42,9 +44,9 @@ Create a new directory for the spades output in your day2_morn folder d2m -# or +#or -cd /scratch/micro612w17_fluxod/username/day2_morn +cd /scratch/micro612w18_fluxod/username/day2_morn > We will create a new directory in day2_morn to save genome assembly results: @@ -54,7 +56,7 @@ mkdir Rush_KPC_266_assembly_result Now, we will use a genome assembly tool called Spades for assembling the reads. ->ii. Test out Spades to make sure its in your path +> ***ii. Test out Spades to make sure it's in your path*** To make sure that your paths are set up correctly, try running Spades with the –h (help) flag, which should produce usage instruction. @@ -65,14 +67,14 @@ spades.py -h ``` ->iii. Submit a cluster job to assemble +> ***iii. Submit a cluster job to assemble*** -Since it takes huge amount of memory and time to assemble genomes using spades, we will run a pbs script on cluster for this step. +Since it takes a huge amount of memory and time to assemble genomes using spades, we will run a pbs script on the cluster for this step. -Now, Open the spades.pbs file residing in day2_morning folder with nano and add the following spades command to the bottom of the file. +Now, open the spades.pbs file residing in the day2_morning folder with nano and add the following spades command to the bottom of the file. Replace the EMAIL_ADDRESS in spades.pbs file with your actual email-address. This will make sure that whenever the job starts, aborts or ends, you will get an email notification. ``` -> Open spades.pbs file using nano: +> Open the spades.pbs file using nano: nano spades.pbs @@ -84,27 +86,28 @@ spades.py --pe1-1 forward_paired.fq.gz --pe1-2 reverse_paired.fq.gz --pe1-s forw ``` ->iv. Submit your job to the cluster with qsub +> ***iv. Submit your job to the cluster with qsub*** ``` qsub -V spades.pbs ``` ->v. Verify that your job is in the queue with the qstat command +> ***v. Verify that your job is in the queue with the qstat command*** ``` qstat –u username ``` -## Assembly evaluation using [QUAST](http://bioinf.spbau.ru/quast) +Assembly evaluation using [QUAST](http://bioinf.spbau.ru/quast) +--------------------------------- [[back to top]](https://github.com/alipirani88/Comparative_Genomics/blob/master/day2_morning/README.md) [[HOME]](https://github.com/alipirani88/Comparative_Genomics/blob/master/README.md) -The output of an assembler is a set of contigs (contiguous sequences), that are composed of the short reads that we fed in. Once we have an assembly we want to evaluate how good it is. This is somewhat qualitative, but there are some standard metrics that people use to quantify the quality of their assembly. Useful metrics include: i) number of contigs (the fewer the better), ii) N50 (the minimum contig size that at least 50% of your assembly belongs, the bigger the better). In general you want your assembly to be less than 200 contigs and have an N50 greater than 50 Kb, although these numbers of highly dependent on the properties of the assembled genome. +The output of an assembler is a set of contigs (contiguous sequences), that are composed of the short reads that we fed in. Once we have an assembly we want to evaluate how good it is. This is somewhat qualitative, but there are some standard metrics that people use to quantify the quality of their assembly. Useful metrics include: i) number of contigs (the fewer the better), ii) N50 (the minimum contig size that at least 50% of your assembly belongs, the bigger the better). In general you want your assembly to be less than 200 contigs and have an N50 greater than 50 Kb, although these numbers are highly dependent on the properties of the assembled genome. To evaluate some example assemblies we will use the tool quast. Quast produces a series of metrics describing the quality of your genome assemblies. ->i. Run quast on a set of previously generated assemblies +> ***i. Run quast on a set of previously generated assemblies*** Now to check the example assemblies residing in your day2_morn folder, run the below quast command. Make sure you are in day2_morn folder in your home directory using 'pwd' @@ -112,9 +115,9 @@ Now to check the example assemblies residing in your day2_morn folder, run the b quast.py -o quast sample_264_contigs.fasta sample_266_contigs.fasta ``` -The command above will generate a report file in /scratch/micro612w17_fluxod/username/day2_morn/quast +The command above will generate a report file in /scratch/micro612w18_fluxod/username/day2_morn/quast ->ii. Explore quast output +> ***ii. Explore quast output*** QUAST creates output in different formats such as html, pdf and text. Now lets check the report.txt file residing in quast folder for assembly statistics. Open report.txt using nano. @@ -122,34 +125,37 @@ QUAST creates output in different formats such as html, pdf and text. Now lets c less quast/report.txt ``` -Check the difference between each assembly statistics. Also check different types of report it generated. +Check the difference between the different assembly statistics. Also check the different types of report it generated. -## Generating multiple sample reports using [multiqc](http://multiqc.info/) +Generating multiple sample reports using [multiqc](http://multiqc.info/) +-------------------------------------------------- ![alt tag](https://github.com/alipirani88/Comparative_Genomics/blob/master/_img/day2_morning/multiqc.jpeg) -Lets imagine a real life scenario where you are working on a project which requires you to analyze and process hundreds of samples. Having a few samples with extremely bad quality is a very commonplace. including these bad samples into your analysis without adjusting their quality threshold can have a profound effect on downstream analysis and interpretations. +Let's imagine a real-life scenario where you are working on a project which requires you to analyze and process hundreds of samples. Having a few samples with extremely bad quality is very commonplace. Including these bad samples into your analysis without adjusting their quality threshold can have a profound effect on downstream analysis and interpretations. -> Question How will you find those bad apples? +- Question: How will you find those bad apples? -Yesterday, we learned how to assess and control the quality of samples as well as screen for contaminants. But the problem with such tools or any other tools is, they work on per-sample basis and produce only single report/logs per sample. Therefore, it becomes cumbersome to dig through each sample reports and make appropriate quality control calls. +Yesterday, we learned how to assess and control the quality of samples as well as screen for contaminants. But the problem with such tools or any other tools is, they work on per-sample basis and produce only single report/logs per sample. Therefore, it becomes cumbersome to dig through each sample's reports and make appropriate quality control calls. -Thankfully, there is a tool called multiqc which parses the results directory containing output from various tools, reads the log report created by those tools (ex: FastQC, FastqScreen, Quast), aggregates them and create a single report summarizing all of these results so that you have everything in one place. This helps greatly in identifying the outliers and removing or reanalysizing it individually. +Thankfully, there is a tool called multiqc which parses the results directory containing output from various tools, reads the log report created by those tools (ex: FastQC, FastqScreen, Quast), aggregates them and creates a single report summarizing all of these results so that you have everything in one place. This helps greatly in identifying the outliers and removing or reanalysizing it individually. -Lets take a look at one such mutiqc report that was generated using FastQC results on C. difficile samples. +Lets take a look at one such mutiqc report that was generated using FastQC results on *C. difficile* samples. -Download the html report Cdiff_multiqc_report.html from your day2_morn folder +Download the html report Cdiff_multiqc_report.html from your day2_morn folder. ``` -# Note: Make sure you change 'username' in the below command with your 'uniqname'. +#Note: Make sure you change 'username' in the below command to your 'uniqname'. -scp username@flux-xfer.arc-ts.umich.edu:/scratch/micro612w17_fluxod/username/day2_morn/Cdiff_multiqc_report.html /path-to-local-directory/ +scp username@flux-xfer.arc-ts.umich.edu:/scratch/micro612w18_fluxod/username/day2_morn/Cdiff_multiqc_report.html /path-to-local-directory/ ``` -> Question: Open this report in a browser and try to find the outlier sample/s -> Question: What is the most important parameter to look for while identifying contamination or bad samples? -> Question: What is the overall quality of data? +- Question: Open this report in a browser and try to find the outlier sample/s + +- Question: What is the most important parameter to look for while identifying contamination or bad samples? + +- Question: What is the overall quality of data? Lets run multiqc on one such directory where we ran and stored FastQC, FastQ Screen and Quast reports. @@ -158,74 +164,67 @@ if you are not in day2_morn folder, navigate to it and change directory to multi ``` d2m -# or +#or -cd /scratch/micro612w17_fluxod/username/day2_morn/ +cd /scratch/micro612w18_fluxod/username/day2_morn/ cd multiqc_analysis -# Try invoking multiqc +#Load python and Try invoking multiqc + +module load python-anaconda2/latest multiqc -h -# Run multiqc on sample reports +#Run multiqc on sample reports multiqc ./ --force --filename workshop_multiqc -# Check if workshop_multiqc.html report was generated +#Check if workshop_multiqc.html report was generated ls -# Copy this report to your local system and open it in a browser for visual inspection +#transfer this report to your local system and open it in a browser for visual inspection -scp username@flux-xfer.arc-ts.umich.edu:/scratch/micro612w17_fluxod/username/day2_morn/workshop_multiqc.html /path-to-local-directory/ +scp username@flux-xfer.arc-ts.umich.edu:/scratch/micro612w18_fluxod/username/day2_morn/workshop_multiqc.html /path-to-local-directory/ ``` -The report contains Assembly, Fastq Screen and FastQC report for a mixture of 51 organism sequence data. Sample names for Assembly statistics ends with "l500_contigs". +The report contains the Assembly, Fastq Screen and FastQC report for a mixture of 51 organisms' sequence data. Sample names for Assembly statistics ends with "l500_contigs". -> Question: Play around with General statistics table by sorting different columns. (click on a column header). To view just the assembly statistics, click on N50 column header. Which sample has the worst N50 value? what do you think must be the reason? +- Question: Play around with the General statistics table by sorting different columns. (click on a column header). To view just the assembly statistics, click on the N50 column header. Which sample has the worst N50 value? What do you think must be the reason? -> Question? Which two sample's genome length i.e column Length(Mbp) stand out from all the other genome lengths? What is their GC %? What about their FastQ Screen result? +- Question: Which two sample's genome length i.e column Length (Mbp) stand out from all the other genome lengths? What is their GC %? What about their FastQ Screen result? -> Question? What about Number of Contigs section? Are you getting reasonable number of contigs or is there any bad assembly? +- Question: What about Number of Contigs section? Are you getting reasonable number of contigs or is there any bad assembly? -> Question? Any sample's quality stand from the rest of the bunch? +- Question: Any sample's quality stand out from the rest of the bunch? -## Compare assembly to reference genome and post-assembly genome improvement +Compare assembly to reference genome and post-assembly genome improvement +------------------------------------------------------------------------- [[back to top]](https://github.com/alipirani88/Comparative_Genomics/blob/master/day2_morning/README.md) [[HOME]](https://github.com/alipirani88/Comparative_Genomics/blob/master/README.md) -Now that we feel confident in our assembly, lets compare it to our reference to see if we can identify any large insertions/deletions using a graphical user interface called Artemis Comparison Tool (ACT) for visualization. +Now that we feel confident in our assembly, let's compare it to our reference to see if we can identify any large insertions/deletions using a graphical user interface called Artemis Comparison Tool (ACT) for visualization. + + +In order to simplify the comparison between assembly and reference, we first need to orient the order of the contigs to reference. -iv. Run abacas to orient contigs to reference +> ***i. Run abacas to orient contigs to the reference*** To orient our contigs relative to the reference we will use a tool called abacas. [ABACAS](http://www.sanger.ac.uk/science/tools/pagit) aligns contigs to a reference genome and then stitches them together to form a “pseudo-chromosome”. @@ -286,13 +270,11 @@ Go back to flux and into the directory where the assembly is located. ``` d2m -# or +#or -cd /scratch/micro612w17_fluxod/username/day2_morn/ +cd /scratch/micro612w18_fluxod/username/day2_morn/ ``` - - Now, we will run abacas using these input parameters: 1) your reference sequence (-r KPNIH.fasta), @@ -312,9 +294,7 @@ Now, we will run abacas using these input parameters: Check if abacas can be properly invoked: ``` - abacas.1.3.1.pl -h - ``` Run abacas on assembly: @@ -323,18 +303,18 @@ Run abacas on assembly: abacas.1.3.1.pl -r KPNIH1.fasta -q sample_266_contigs.fasta -p nucmer -b -d -a -o sample_266_contigs_ordered ``` -v. Use ACT to view contig alignment to reference genome +> ***ii. Use ACT to view contig alignment to reference genome*** -> Use scp to get ordered fasta sequence and .cruch file onto your laptop +- Use scp to get ordered fasta sequence and .cruch file onto your laptop ``` > Dont forget to change username and /path-to-local-ACT_contig_comparison-directory/ in the below command -scp username@flux-xfer.arc-ts.umich.edu:/scratch/micro612w17_fluxod/username/day2_morn/sample_266_contigs_ordered* /path-to-previously-created-local-ACT_contig_comparison-directory/ +scp username@flux-xfer.arc-ts.umich.edu:/scratch/micro612w18_fluxod/username/day2_morn/sample_266_contigs_ordered* /path-to-previously-created-local-ACT_contig_comparison-directory/ ``` -> Read files into ACT +- Read files into ACT ``` Go to File on top left corner of ACT window -> open @@ -344,36 +324,37 @@ Sequence file 2 = sample_266_contigs_ordered.fasta Click Apply button -> Dont close the ACT window +Dont close the ACT window ``` -> Notice that the alignment is totally beautiful now!!! Scan through the alignment and play with ACT features to look at genes present in reference but not in assembly. Keep the ACT window open for further visualizations. +- Notice that the alignment is totally beautiful now!!! Scan through the alignment and play with ACT features to look at genes present in reference but not in assembly. Keep the ACT window open for further visualizations. ![alt tag](https://github.com/alipirani88/Comparative_Genomics/blob/master/_img/day2_morning/beautiful.png) -## Map reads to the final ordered assembly +Map reads to the final ordered assembly +--------------------------------------- [[back to top]](https://github.com/alipirani88/Comparative_Genomics/blob/master/day2_morning/README.md) [[HOME]](https://github.com/alipirani88/Comparative_Genomics/blob/master/README.md) You already know the drill/steps involved in reads mapping. Here, we will map the reads to the final ordered assembly genome instead of KPNIH1.fasta. -First create bwa index of ordered fasta file. +- First create a bwa index of the ordered fasta file. ``` > Only proceed further if everything worked uptil now. Make sure you are in day2_morn directory. d2m -# or +#or -cd /scratch/micro612w17_fluxod/username/day2_morn/ +cd /scratch/micro612w18_fluxod/username/day2_morn/ bwa index sample_266_contigs_ordered.fasta samtools faidx sample_266_contigs_ordered.fasta ``` -Align the trimmed reads which we used for genome assembly to this ordered assembly using BWA mem. Convert SAM to BAM. Sort and index it. +- Align the trimmed reads which we used for genome assembly to this ordered assembly using BWA mem. Convert SAM to BAM. Sort and index it. ``` @@ -387,13 +368,14 @@ samtools index sample_266_contigs_ordered_sort.bam ``` -Lets visualize the alignments against our ordered assembly. +- Lets visualize the alignments against our ordered assembly. + Copy this sorted and indexed BAM files to local ACT_contig_comparison directory. ``` > Dont forget to change username and /path-to-local-ACT_contig_comparison-directory/ in the below command -scp username@flux-xfer.arc-ts.umich.edu:/scratch/micro612w17_fluxod/username/day2_morn/sample_266_contigs_ordered_sort* /path-to-previously-created-local-ACT_contig_comparison-directory/ +scp username@flux-xfer.arc-ts.umich.edu:/scratch/micro612w18_fluxod/username/day2_morn/sample_266_contigs_ordered_sort* /path-to-previously-created-local-ACT_contig_comparison-directory/ ``` @@ -405,16 +387,21 @@ Select File -> sample_266_contigs_ordered.fasta -> Read BAM/VCF > select sorted ![alt tag](https://github.com/alipirani88/Comparative_Genomics/blob/master/_img/day2_morning/aligned_reads_deletion.png) +Using abacas and ACT to compare VRE/VSE genome +---------------------------------------------- -## Genome Annotation +Now that we learned how ACT can be used to explore and compare genome organization and differences, try comparing VSE_ERR374928_contigs.fasta, a Vancomycin-susceptible Enterococcus against a Vancomycin-resistant Enterococcus reference genome Efaecium_Aus0085.fasta that are placed in VRE_vanB_comparison folder under day2_morn directory. The relevant reference genbank file that can be used in ACT is Efaecium_Aus0085.gbf. + +Genome Annotation +----------------- [[back to top]](https://github.com/alipirani88/Comparative_Genomics/blob/master/day2_morning/README.md) [[HOME]](https://github.com/alipirani88/Comparative_Genomics/blob/master/README.md) **Identify protein-coding genes with [Prokka](http://www.vicbioinformatics.com/software.prokka.shtml)** -From our ACT comparison of our assembly and the reference we can clearly see that there is unique sequence in our assembly. However, we still don’t know what that sequence encodes! To try to get some insight into the sorts of genes unique to our assembly we will run a genome annotation pipeline called Prokka. Prokka works by first running denovo gene prediction algorithms to identify protein coding genes and tRNA genes. Next, for protein coding genes Prokka runs a series of comparisons against databases of annotated genes to generate putative annotations for your genome. +From our ACT comparison of our assembly and the reference we can clearly see that there is unique sequence in our assembly. However, we still don’t know what that sequence encodes! To try to get some insight into the sorts of genes unique to our assembly we will run a genome annotation pipeline called Prokka. Prokka works by first running *de novo* gene prediction algorithms to identify protein coding genes and tRNA genes. Next, for protein coding genes Prokka runs a series of comparisons against databases of annotated genes to generate putative annotations for your genome. ->i. Run Prokka on assembly +> ***i. Run Prokka on assembly*** ``` prokka –setupdb @@ -427,23 +414,21 @@ Execute Prokka on your ordered assembly d2m -# or +#or -cd /scratch/micro612w17_fluxod/username/day2_morn/ +cd /scratch/micro612w18_fluxod/username/day2_morn/ mkdir sample_266_prokka -> Dont forget to change username in the below command - prokka -kingdom Bacteria -outdir sample_266_prokka -force -prefix sample_266 sample_266_contigs_ordered.fasta -> Use scp to get Prokka annotated genome on your laptop. +> Use scp or cyberduck to get Prokka annotated genome on your laptop. Dont forget to change username in the below command -scp -r username@flux-xfer.arc-ts.umich.edu:/scratch/micro612w17_fluxod/username/day2_morn/sample_266_prokka/ /path-to-local-ACT_contig_comparison-directory/ +scp -r username@flux-xfer.arc-ts.umich.edu:/scratch/micro612w18_fluxod/username/day2_morn/sample_266_prokka/ /path-to-local-ACT_contig_comparison-directory/ ``` ->ii. Reload comparison into ACT now that we’ve annotated the un-annotated! +> ***ii. Reload comparison into ACT now that we’ve annotated the un-annotated!*** Read files into ACT @@ -454,4 +439,4 @@ Comparison file 1 = sample_266_contigs_ordered.crunch Sequence file 2 = sample_266_contigs_ordered.gbf ``` ->Play around with ACT to see what types of genes are unique to sample 266!!! +- Play around with ACT to see what types of genes are unique to sample 266!!! diff --git a/day3_afternoon/README.md b/day3_afternoon/README.md index fe15114..e9f3b0c 100644 --- a/day3_afternoon/README.md +++ b/day3_afternoon/README.md @@ -1,7 +1,9 @@ -# Day 3 Afternoon +Day 3 Afternoon +=============== [[HOME]](https://github.com/alipirani88/Comparative_Genomics/blob/master/README.md) -## Klebsiella pneumoniae comparative genomic analysis +Klebsiella pneumoniae comparative genomic analysis +-------------------------------------------------- To finish up the workshop we are going to go through the process of working up a complete dataset, from start to finish. This set of genomes originated from a regional outbreak of bla-KPC carrying Klebsiella pneumoniae – one of the most concerning healthcare associated pathogens. The goal is to follow up on a previously [published](http://cid.oxfordjournals.org/content/53/6/532.abstract) epidemiologic analysis, and see if genomics supports prior epidemiologic conclusions and can provide additional insights. @@ -25,20 +27,25 @@ Execute the following command to copy files for this afternoon’s exercises to ``` -cd /scratch/micro612w17_fluxod/username +cd /scratch/micro612w18_fluxod/username -cp -r /scratch/micro612w17_fluxod/shared/data/day3_after ./ +or + +wd + +cp -r /scratch/micro612w18_fluxod/shared/data/day3_after ./ ``` -## Perform QC on fastq files +Perform QC on fastq files +------------------------- [[back to top]](https://github.com/alipirani88/Comparative_Genomics/blob/master/day3_afternoon/README.md) [[HOME]](https://github.com/alipirani88/Comparative_Genomics/blob/master/README.md) On the first morning you ran FastQC to evaluate the quality of a single genome. However, a typical project will include many genomes and you will want to check the quality of all of your samples. From the bash workshop, I hope you can appreciate that you do not want to process 100 genomes by typing 100 commands – rather you want to write a short shell script to do the work for you! ->i. Edit the shell script fastqc.sh located in /scratch/micro612w17_fluxod/your username/day3_after to run FastQC on all fastq files. +> ***i. Edit the shell script fastqc.sh located in /scratch/micro612w18_fluxod/your username/day3_after to run FastQC on all fastq files.*** **Important info about this shell script** - The shell script includes a for loop that loops over all of the genomes in the target directory @@ -53,7 +60,7 @@ On the first morning you ran FastQC to evaluate the quality of a single genome. The fastq files are located in: ``` -/scratch/micro612w17_fluxod/shared/data/day3_after_fastq/ +/scratch/micro612w18_fluxod/shared/data/day3_after_fastq/ ``` Rather than copying these to your directory, analyze the files directly in that directory, so everyone doesn’t have to copy 25G to their home directories. @@ -62,14 +69,15 @@ Copy and paste commands to run fastqc.sh as PBS script, into a PBS script and su Your PBS script wil contain the following command after the PBS preamble stuff(Make sure your $PBS_O_WORKDIR is set inside the pbs script): -```bash fastqc.sh /scratch/micro612w17_fluxod/shared/data/day3_after_fastq/ ``` +```bash fastqc.sh /scratch/micro612w18_fluxod/shared/data/day3_after_fastq/ ``` ->ii. Examine output of FastQC to verify that all samples are OK +> ***ii. Examine output of FastQC to verify that all samples are OK*** Check the multiqc report of your fastq files. -## Examine results of [SPANDx](http://www.ncbi.nlm.nih.gov/pubmed/25201145) pipeline +Examine results of [SPANDx](http://www.ncbi.nlm.nih.gov/pubmed/25201145) pipeline +--------------------------- [[back to top]](https://github.com/alipirani88/Comparative_Genomics/blob/master/day3_afternoon/README.md) [[HOME]](https://github.com/alipirani88/Comparative_Genomics/blob/master/README.md) @@ -77,9 +85,13 @@ On the afternoon of day 1 we saw how many steps are involved in calling variants More information on SPANDx pipeline can be obtained from [this](https://sourceforge.net/projects/spandx/files/SPANDx%20Manual_v3.1.pdf/download) manual. +A snapshot of the pipeline is shown below: + +![alt tag](https://github.com/alipirani88/Comparative_Genomics/blob/master/_img/spandx.jpg) + Because it takes a while to run, we have pre-run it for you. Your task will be to sort through the outputs of SPANDx. The detailed information about how to interpret the output is in SPANDx manual(section INTERPRETING THE OUTPUTS). ->i. Look at overall statistics for variant calling in excel +> ***i. Look at overall statistics for variant calling in excel*** SPANDx produces an overall summary file of its run that includes: @@ -96,25 +108,26 @@ Use less to look at this file and then apply unix commands to extract and sort i **HINTS** The following unix commands can be used to get sorted lists of coverage and numbers of SNPs/indels: tail, cut, sort ->ii. Look at filtered variants produced by SPANDx in excel +> ***ii. Look at filtered variants produced by SPANDx in excel*** SPANDx also produces a summary file of the variants/indels it identified in the core genome. This summary file is: -```/scratch/micro612w17_fluxod/username/day3_after/SPANDx_output/Outputs/All_SNPs_annotated.txt ``` +```/scratch/micro612w18_fluxod/username/day3_after/SPANDx_output/Outputs/All_SNPs_annotated.txt ``` -Use sftp to download this file and view in excel +Use cyberduck/scp to download this file and view in excel - View SPANDx manual for interpretation of different columns which can be found [here](https://sourceforge.net/projects/spandx/files/SPANDx%20Manual_v3.1.pdf/download) - Back on Flux, use grep to pull SNPs that have HIGH impact - What types of mutations are predicted to have “HIGH” impact? - How many genomes do these HIGH impact mutations tend to be present in? How do you interpret this? -## Recombination detection and tree generation +Recombination detection and tree generation +------------------------------------------- [[back to top]](https://github.com/alipirani88/Comparative_Genomics/blob/master/day3_afternoon/README.md) [[HOME]](https://github.com/alipirani88/Comparative_Genomics/blob/master/README.md) ->i. Plot the distribution of variants across the genome in R +> ***i. Plot the distribution of variants across the genome in R*** The positions of variants are embedded in the first column of Outputs/Comparative/All_SNPs_annotated.txt, but you have to do some work to isolate them! @@ -129,11 +142,11 @@ The positions of variants are embedded in the first column of Outputs/Comparativ - Finally, download this file, read it into R using ‘read.table’ and use ‘hist’ to plot a histogram of the positions - Do you observe clustering of variants that would be indicative of recombination? ->ii. Create fasta file of variants from nexus file +> ***ii. Create fasta file of variants from nexus file*** SPANDx creates a file of core SNPs in a slightly odd format (transposed nexus). This file is called: -```/scratch/micro612w17_fluxod/username/day3_after/SPANDx_output/Outputs/Comparative/Ortho_SNP_matrix.nex ``` +```/scratch/micro612w18_fluxod/username/day3_after/SPANDx_output/Outputs/Comparative/Ortho_SNP_matrix.nex ``` For convenience, apply the custom perl script located in the same directory to convert it to fasta format @@ -143,7 +156,7 @@ perl transpose_nex_to_fasta.pl Ortho_SNP_matrix.nex This file Outputs/Comparative/Ortho_SNP_matrix.fasta should now exist ->iii. Create maximum likelihood tree in Seaview +> ***iii. Create maximum likelihood tree in Seaview*** ``` @@ -153,11 +166,12 @@ Save tree for later analysis ``` -## Phylogenetic tree annotation and visualization +Phylogenetic tree annotation and visualization +---------------------------------------------- [[back to top]](https://github.com/alipirani88/Comparative_Genomics/blob/master/day3_afternoon/README.md) [[HOME]](https://github.com/alipirani88/Comparative_Genomics/blob/master/README.md) ->i. Load the maximum likelihood tree into iTOL +> ***i. Load the maximum likelihood tree into iTOL*** Note that because the out-group is so distantly related it is difficult to make out the structure of the rest of the tree. @@ -166,7 +180,7 @@ Note that because the out-group is so distantly related it is difficult to make - Click on the KPNIH1 leaf, go to the “tree structure” menu and “delete leaf” - Click on the extended branch leading to where KPNIH1 was, go to the “tree structure” menu and click “collapse branch” ->ii. Load the annotation file ‘Rush_KPC_facility_codes_iTOL.txt’ to view the facility of isolation, play with tree visualization properties to understand how isolates group by facility, Circular vs. normal tree layout, Bootstrap values, Ignoring branch lengths +> ***ii. Load the annotation file ‘Rush_KPC_facility_codes_iTOL.txt’ to view the facility of isolation, play with tree visualization properties to understand how isolates group by facility, Circular vs. normal tree layout, Bootstrap values, Ignoring branch lengths*** ``` @@ -175,11 +189,12 @@ Which patient’s infections might have originated from the blue facility? ``` -## Assessment of genomic deletions +Assessment of genomic deletions +------------------------------- [[back to top]](https://github.com/alipirani88/Comparative_Genomics/blob/master/day3_afternoon/README.md) [[HOME]](https://github.com/alipirani88/Comparative_Genomics/blob/master/README.md) ->i. Download genome coverage bed file and load into R +> ***i. Download genome coverage bed file and load into R*** This file is located in: Outputs/Comparative/Bedcov_merge.txt This file contains information regarding locations in the reference genome that each sequenced genome does and does not map to. @@ -201,14 +216,14 @@ After you download this file, read it into R **HINTS** - Use the read.table function with the relevant parameters being: header and sep ->ii. Plot heatmap of genome coverage bed file +> ***ii. Plot heatmap of genome coverage bed file*** **HINTS** - The first 3 columns of the bed file specify the name of the chromosome and the genome coordinates – therefore you want to subset your matrix to not include these columns - Use the heatmap3 function to make your heatmap with the following parameters: scale = “none” (keeps original values), Rowv = NA (suppress clustering by rows – why might we not want to cluster by rows for this analysis?) -> Note a large genomic deletion among a subset of isolates. Does this deletion fit with the phylogeny from above? +- Note a large genomic deletion among a subset of isolates. Does this deletion fit with the phylogeny from above? iii. Explore genomic deletion in more detail with ACT diff --git a/day3_morning/README.md b/day3_morning/README.md index 485cb07..0daf316 100644 --- a/day3_morning/README.md +++ b/day3_morning/README.md @@ -1,4 +1,5 @@ -# Day 3 Morning +Day 3 Morning +============= [[HOME]](https://github.com/alipirani88/Comparative_Genomics/blob/master/README.md) On day 1, we ran through a pipeline to map reads against a reference genome and call variants, but didn’t do much with the variants we identified. Among the most common analyses to perform on a set of variants is to construct phylogenetic trees. Here we will explore different tools for generating and visualizing phylogenetic trees, and also see how recombination can distort phylogenetic signal. @@ -20,23 +21,24 @@ Execute the following command to copy files for this afternoon’s exercises to ``` wd -# or +#or -cd /scratch/micro612w17_fluxod/username +cd /scratch/micro612w18_fluxod/username -cp -r /scratch/micro612w17_fluxod/shared/data/day3_morn ./ +cp -r /scratch/micro612w18_fluxod/shared/data/day3_morn ./ ``` -## Perform whole genome alignment with [Mauve](http://darlinglab.org/mauve/mauve.html) and convert alignment to other useful formats +Perform whole genome alignment with [Mauve](http://darlinglab.org/mauve/mauve.html) and convert alignment to other useful formats +------------------------------------------- [[back to top]](https://github.com/alipirani88/Comparative_Genomics/blob/master/day3_morning/README.md) [[HOME]](https://github.com/alipirani88/Comparative_Genomics/blob/master/README.md) An alternative approach for identification of variants among genomes is to perform whole genome alignments of assemblies. If the original short read data is unavailable, this might be the only approach available to you. Typically, these programs don’t scale well to large numbers of genomes (e.g. > 100), but they are worth being familiar with. We will use the tool mauve for constructing whole genome alignments of our five A. baumannii genomes. ->i. Perform mauve alignment and transfer xmfa back to flux +> ***i. Perform mauve alignment and transfer xmfa back to flux*** -Use sftp to get genomes onto your laptop +Use cyberduck/scp to get genomes folder Abau_genomes onto your laptop ``` Run these commands on your local system/terminal: @@ -47,15 +49,9 @@ mkdir Abau_mauve cd Abau_mauve -> Now copy Abau_genomes folder residing in your day3_morn folder using scp or sftp: +- Now copy Abau_genomes folder residing in your day3_morn folder using scp or cyberduck: -scp -r username@flux-xfer.arc-ts.umich.edu:/scratch/micro612w17_fluxod/username/day3_morn/Abau_genomes ./ - -OR - -sftp –r username@flux-login.arc-ts.umich.edu -cd /scratch/micro612w17_fluxod/username/day3_morn -get Abau_genomes +scp -r username@flux-xfer.arc-ts.umich.edu:/scratch/micro612w18_fluxod/username/day3_morn/Abau_genomes ./ ``` @@ -72,28 +68,20 @@ vi. Wait for Mauve to finish and explore the graphical interface ``` -Use sftp or scp to transfer your alignment back to flux for some processing +Use cyberduck or scp to transfer your alignment back to flux for some processing ``` -cd ~/Desktop/Abau_mauve -sftp –r username@flux-login.arc-ts.umich.edu -cd /scratch/micro612w17_fluxod/username/day3_morn -put mauve_ECII_outgroup - -OR - -scp ~/Desktop/Abau_mauve/mauve_ECII_outgroup username@flux-xfer.arc-ts.umich.edu:/scratch/micro612w17_fluxod/username/day3_morn +scp ~/Desktop/Abau_mauve/mauve_ECII_outgroup username@flux-xfer.arc-ts.umich.edu:/scratch/micro612w18_fluxod/username/day3_morn ``` ->ii. Convert alignment to fasta format +> ***ii. Convert alignment to fasta format*** Mauve produces alignments in .xmfa format (use less to see what this looks like), which is not compatible with other programs we want to use. We will use a custom script convert_msa_format.pl to change the alignment format to fasta format - -``` +``` Now run these command in day3_morn folder on flux: module load bioperl @@ -102,7 +90,8 @@ perl convert_msa_format.pl -i mauve_ECII_outgroup -o mauve_ECII_outgroup.fasta - ``` -## Perform some DNA sequence comparisons and phylogenetic analysis in [APE](http://ape-package.ird.fr/), an R package +Perform some DNA sequence comparisons and phylogenetic analysis in [APE](http://ape-package.ird.fr/), an R package +------------------------------------------------------------------------ [[back to top]](https://github.com/alipirani88/Comparative_Genomics/blob/master/day3_morning/README.md) [[HOME]](https://github.com/alipirani88/Comparative_Genomics/blob/master/README.md) @@ -110,36 +99,32 @@ There are lots of options for phylogenetic analysis. Here, we will use the ape p Note that ape has a ton of useful functions for more sophisticated phylogenetic analyses! ->i. Get fasta alignment you just converted to your own computer using sftp or scp +> ***i. Get fasta alignment you just converted to your own computer using cyberduck or scp*** ``` cd ~/Desktop/Abau_mauve -sftp –r username@flux-login.arc-ts.umich.edu -cd /scratch/micro612w17_fluxod/username/day3_morn -get mauve_ECII_outgroup.fasta - -OR -scp username@flux-xfer.arc-ts.umich.edu:/scratch/micro612w17_fluxod/username/day3_morn/mauve_ECII_outgroup.fasta ./ +scp username@flux-xfer.arc-ts.umich.edu:/scratch/micro612w18_fluxod/username/day3_morn/mauve_ECII_outgroup.fasta ./ ``` -ii. Read alignment into R +> ***ii. Read alignment into R*** -Fire up RStudio and install/load ape +Fire up RStudio, set your working directory to ~/Desktop/Abau_mauve/ or wherever you have downloaded mauve_ECII_outgroup.fasta file and install/load ape Use the read.dna function in ape to read in you multiple alignments. Print out the variable to get a summary. ``` +setwd("~/Desktop/Abau_mauve/") install.packages("ape") library(ape) abau_msa = read.dna('mauve_ECII_outgroup.fasta', format = "fasta") ``` ->iii. Get variable positions +> ***iii. Get variable positions*** The DNA object created by read.dna can also be addressed as a matrix, where the columns are positions in the alignment and rows are your sequences. We will next treat our alignment as a matrix, and use apply and colSums to get positions in the alignment that vary among our sequences. Examine these commands in detail to understand how they are working together to give you a logical vector indicating which positions vary in your alignment. @@ -150,7 +135,7 @@ abau_msa_bin = apply(abau_msa, 2, FUN = function(x){x == x[1]}) abau_var_pos = colSums(abau_msa_bin) < 5 ``` ->iv. Get non-gap positions +> ***iv. Get non-gap positions*** For our phylogenetic analysis we want to focus on the core genome, so we will next identify positions in the alignment where all our genomes have sequence. @@ -158,7 +143,7 @@ For our phylogenetic analysis we want to focus on the core genome, so we will ne non_gap_pos = colSums(as.character(abau_msa) == '-') == 0 ``` ->v. Count number of variants between sequences +> ***v. Count number of variants between sequences*** Now that we know which positions in the alignment are core and variable, we can extract these positions and count how many variants there are among our genomes. Do count pairwise variants we will use the dist.dna function in ape. The model parameter indicates that we want to compare sequences by counting differences. Print out the resulting matrix to see how different our genomes are. @@ -169,7 +154,7 @@ var_count_matrix = dist.dna(abau_msa_var, model = "N") ``` ->vi. Construct phylogenetic tree +> ***vi. Construct phylogenetic tree*** Now we are ready to construct our first phylogenetic tree! @@ -193,17 +178,18 @@ Finally, plot your tree to see how the genomes group. plot(abau_nj_tree) ``` -## Perform SNP density analysis to discern evidence of recombination +Perform SNP density analysis to discern evidence of recombination +----------------------------------------------------------------- [[back to top]](https://github.com/alipirani88/Comparative_Genomics/blob/master/day3_morning/README.md) [[HOME]](https://github.com/alipirani88/Comparative_Genomics/blob/master/README.md) An often-overlooked aspect of a proper phylogenetic analysis is to exclude recombinant sequences. Homologous recombination in bacterial genomes is a mode of horizontal transfer, wherein genomic DNA is taken up and swapped in for a homologous sequence. The reason it is critical to account for these recombinant regions is that these horizontally acquired sequences do not represent the phylogenetic history of the strain of interest, but rather in contains information regarding the strain in which the sequence was acquired from. One simple approach for detecting the presence of recombination is to look at the density of variants across a genome. The existence of unusually high or low densities of variants is suggestive that these regions of aberrant density were horizontally acquired. Here we will look at our closely related A. baumannii genomes to see if there is evidence of aberrant variant densities. ->i. Subset sequences to exclude the out-group +> ***i. Subset sequences to exclude the out-group*** For this analysis we want to exclude the out-group, because we are interested in determining whether recombination would hamper our ability to reconstruct the phylogenetic relationship among our closely related set of genomes. ->Note that the names of the sequences might be different for you, so check that if the command doesn’t work. +- Note that the names of the sequences might be different for you, so check that if the command doesn’t work. ``` @@ -211,7 +197,7 @@ abau_msa_no_outgroup = abau_msa[c('ACICU_genome','AbauA_genome','AbauC_genome',' ``` ->ii. Get variable positions +> ***ii. Get variable positions*** Next, we will get the variable positions, as before @@ -223,7 +209,7 @@ abau_no_outgroup_var_pos = colSums(abau_msa_no_outgroup_bin) < 4 ``` ->iii. Get non-gap positions +> ***iii. Get non-gap positions*** Next, we will get the core positions, as before @@ -233,7 +219,7 @@ abau_no_outgroup_non_gap_pos = colSums(as.character(abau_msa_no_outgroup) == '-' ``` ->iv. Create overall histogram of SNP density +> ***iv. Create overall histogram of SNP density*** Finally, create a histogram of SNP density across the genome. Does the density look even, or do you think there might be just a touch of recombination? @@ -241,25 +227,25 @@ Finally, create a histogram of SNP density across the genome. Does the density l hist(which(abau_no_outgroup_var_pos & abau_no_outgroup_non_gap_pos), 10000) ``` -## Perform recombination filtering with [Gubbins](https://www.google.com/search?q=gubbins+sanger&ie=utf-8&oe=utf-8) +Perform recombination filtering with [Gubbins](https://www.google.com/search?q=gubbins+sanger&ie=utf-8&oe=utf-8) +---------------------------------------------- [[back to top]](https://github.com/alipirani88/Comparative_Genomics/blob/master/day3_morning/README.md) [[HOME]](https://github.com/alipirani88/Comparative_Genomics/blob/master/README.md) Now that we know there is recombination, we know that we need to filter out the recombinant regions to discern the true phylogenetic relationship among our strains. In fact, this is such an extreme case (~99% of variants of recombinant), that we could be totally misled without filtering recombinant regions. To accomplish this we will use the tool gubbins, which essentially relies on elevated regions of variant density to perform recombination filtering. ->i. Run gubbins on your fasta alignment +> ***i. Run gubbins on your fasta alignment*** Go back on flux and load modules required by gubbins - - -``` -Check if gubbins run after loading newer version flux modules + + +``` -Newer version: -module load python-anaconda2/201607 biopython dendropy reportlab fasttree RAxML fastml/gub gubbins +module load bioperl python-anaconda2/201607 biopython dendropy reportlab fasttree RAxML fastml/gub gubbins ``` @@ -268,15 +254,15 @@ Run gubbins on your fasta formatted alignment ``` d3m -# or +#or -cd /scratch/micro612w17_fluxod/username/day3_morn +cd /scratch/micro612w18_fluxod/username/day3_morn run_gubbins.py -v -f 50 -o Abau_AB0057_genome mauve_ECII_outgroup.fasta ``` ->ii. Create gubbins output figure +> ***ii. Create gubbins output figure*** Gubbins produces a series of output files, some of which can be run through another program to produce a visual display of filtered recombinant regions. Run the gubbins_drawer.py script to create a pdf visualization of recombinant regions. @@ -293,23 +279,16 @@ The inputs are: gubbins_drawer.py -t mauve_ECII_outgroup.final_tree.tre -o mauve_ECII_outgroup.recombination.pdf mauve_ECII_outgroup.recombination_predictions.embl ``` ->iii. Download and view gubbins figure and filtered tree +> ***iii. Download and view gubbins figure and filtered tree*** -Use sftp or scp to get gubbins output files into Abau_mauve on your local system +Use cyberduck or scp to get gubbins output files into Abau_mauve on your local system ``` cd ~/Desktop/Abau_mauve -sftp –r username@flux-login.arc-ts.umich.edu -cd /scratch/micro612w17_fluxod/username/day3_morn -get mauve_ECII_outgroup.recombination.pdf -get mauve_ECII_outgroup.final_tree.tre - -OR - -scp username@flux-xfer.arc-ts.umich.edu:/scratch/micro612w17_fluxod/username/day3_morn/mauve_ECII_outgroup.recombination.pdf ./ -scp username@flux-xfer.arc-ts.umich.edu:/scratch/micro612w17_fluxod/username/day3_morn/mauve_ECII_outgroup.final_tree.tre ./ +scp username@flux-xfer.arc-ts.umich.edu:/scratch/micro612w18_fluxod/username/day3_morn/mauve_ECII_outgroup.recombination.pdf ./ +scp username@flux-xfer.arc-ts.umich.edu:/scratch/micro612w18_fluxod/username/day3_morn/mauve_ECII_outgroup.final_tree.tre ./ ``` @@ -337,17 +316,18 @@ To view sub-tree of interest click on “sub-tree” and select the sub-tree exc How does the structure look different than the unfiltered tree? -> Note that turning back to the backstory of these isolates, Abau_B and Abau_C were both isolated first from the same patient. So this analysis supports that patient having imported both strains, which likely diverged at a prior hospital at which they resided. +- Note that turning back to the backstory of these isolates, Abau_B and Abau_C were both isolated first from the same patient. So this analysis supports that patient having imported both strains, which likely diverged at a prior hospital at which they resided. -## Create annotated publication quality trees with [iTOL](http://itol.embl.de/) +Create annotated publication quality trees with [iTOL](http://itol.embl.de/) +------------------------------------------------------ [[back to top]](https://github.com/alipirani88/Comparative_Genomics/blob/master/day3_morning/README.md) [[HOME]](https://github.com/alipirani88/Comparative_Genomics/blob/master/README.md) For the final exercise we will use a different dataset, composed of USA300 methicillin-resistant Staphylococcus aureus genomes. USA300 is a strain of growing concern, as it has been observed to cause infections in both hospitals and in otherwise healthy individuals in the community. An open question is whether there are sub-clades of USA300 in the hospital and the community, or if they are all the same. Here you will create an annotated phylogenetic tree of strains from the community and the hospital, to discern if these form distinct clusters. ->i. Download MRSA genome alignment from flux +> ***i. Download MRSA genome alignment from flux*** -Use sftp or scp to get genomes onto your laptop +Use cyberduck or scp to get genomes onto your laptop ``` @@ -355,20 +335,13 @@ cd ~/Desktop (or wherever your desktop is) mkdir MRSA_genomes cd MRSA_genomes -sftp –r username@flux-login.arc-ts.umich.edu -cd /scratch/micro612w17_fluxod/username/day3_morn -get 2016-3-9_KP_BSI_USA300.fa -get 2016-3-9_KP_BSI_USA300_iTOL_HA_vs_CA.txt - -OR - -scp username@flux-xfer.arc-ts.umich.edu:/scratch/micro612w17_fluxod/username/day3_morn/2016-3-9_KP_BSI_USA300.fa ./ -scp username@flux-xfer.arc-ts.umich.edu:/scratch/micro612w17_fluxod/username/day3_morn/2016-3-9_KP_BSI_USA300_iTOL_HA_vs_CA.txt ./ +scp username@flux-xfer.arc-ts.umich.edu:/scratch/micro612w18_fluxod/username/day3_morn/2016-3-9_KP_BSI_USA300.fa ./ +scp username@flux-xfer.arc-ts.umich.edu:/scratch/micro612w18_fluxod/username/day3_morn/2016-3-9_KP_BSI_USA300_iTOL_HA_vs_CA.txt ./ ``` ->ii. Look at SNP density for MRSA alignment in R +> ***ii. Look at SNP density for MRSA alignment in R*** Before we embark on our phylogenetic analysis, lets look at the SNP density to verify that there is no recombination @@ -383,7 +356,7 @@ hist(which(mrsa_var_pos), 10000) Does it look like there is evidence of recombination? ->iii. Create fasta alignment with only variable positions +> ***iii. Create fasta alignment with only variable positions*** Next, lets create a new fasta alignment file containing only the variant positions, as this will be easier to deal with in Seaview @@ -393,7 +366,7 @@ write.dna(mrsa_msa[, mrsa_var_pos], file = '2016-3-9_KP_BSI_USA300_var_pos.fa', ``` ->iv. Read alignment into Seaview and construct Neighbor Joining tree +> ***iv. Read alignment into Seaview and construct Neighbor Joining tree*** In the previous exercise, we used Seaview to look at a pre-existing tree, here we will use Seaview to create a tree from a multiple sequence alignment @@ -418,7 +391,7 @@ File -> Save rooted tree Note that in your research it is not a good idea to use these phylogenetic tools completely blind and I strongly encourage embarking on deeper learning yourself, or consulting with an expert before doing an analysis for a publication -v. Read tree into iTOL +> ***v. Read tree into iTOL*** ``` @@ -434,9 +407,9 @@ Explore different visualization options for your tree (e.g. make it circular, sh Note that you can always reset your tree if you are unhappy with the changes you’ve made ->vi. Add annotations to tree +> ***vi. Add annotations to tree*** One of the most powerful features of iTOL is its ability to overlay diverse types of descriptive meta-data on your tree (http://itol.embl.de/help.cgi#datasets). Here, we will overlay our data on whether an isolate was from a community or hospital infection. To do this simply drag-and-drop the annotation file (2016-3-9_KP_BSI_USA300_iTOL_HA_vs_CA.txt) on your tree and voila! -> Do community and hospital isolates cluster together, or are they inter-mixed? +- Do community and hospital isolates cluster together, or are they inter-mixed? diff --git a/docs/Makefile b/docs/Makefile new file mode 100644 index 0000000..7c0845a --- /dev/null +++ b/docs/Makefile @@ -0,0 +1,192 @@ +# Makefile for Sphinx documentation +# + +# You can set these variables from the command line. +SPHINXOPTS = +SPHINXBUILD = /nfs/esnitkin/bin_group/anaconda2/bin/sphinx-build +PAPER = +BUILDDIR = build + +# User-friendly check for sphinx-build +ifeq ($(shell which $(SPHINXBUILD) >/dev/null 2>&1; echo $$?), 1) +$(error The '$(SPHINXBUILD)' command was not found. Make sure you have Sphinx installed, then set the SPHINXBUILD environment variable to point to the full path of the '$(SPHINXBUILD)' executable. Alternatively you can add the directory with the executable to your PATH. If you don't have Sphinx installed, grab it from http://sphinx-doc.org/) +endif + +# Internal variables. +PAPEROPT_a4 = -D latex_paper_size=a4 +PAPEROPT_letter = -D latex_paper_size=letter +ALLSPHINXOPTS = -d $(BUILDDIR)/doctrees $(PAPEROPT_$(PAPER)) $(SPHINXOPTS) source +# the i18n builder cannot share the environment and doctrees with the others +I18NSPHINXOPTS = $(PAPEROPT_$(PAPER)) $(SPHINXOPTS) source + +.PHONY: help clean html dirhtml singlehtml pickle json htmlhelp qthelp devhelp epub latex latexpdf text man changes linkcheck doctest coverage gettext + +help: + @echo "Please use \`make ' where is one of" + @echo " html to make standalone HTML files" + @echo " dirhtml to make HTML files named index.html in directories" + @echo " singlehtml to make a single large HTML file" + @echo " pickle to make pickle files" + @echo " json to make JSON files" + @echo " htmlhelp to make HTML files and a HTML help project" + @echo " qthelp to make HTML files and a qthelp project" + @echo " applehelp to make an Apple Help Book" + @echo " devhelp to make HTML files and a Devhelp project" + @echo " epub to make an epub" + @echo " latex to make LaTeX files, you can set PAPER=a4 or PAPER=letter" + @echo " latexpdf to make LaTeX files and run them through pdflatex" + @echo " latexpdfja to make LaTeX files and run them through platex/dvipdfmx" + @echo " text to make text files" + @echo " man to make manual pages" + @echo " texinfo to make Texinfo files" + @echo " info to make Texinfo files and run them through makeinfo" + @echo " gettext to make PO message catalogs" + @echo " changes to make an overview of all changed/added/deprecated items" + @echo " xml to make Docutils-native XML files" + @echo " pseudoxml to make pseudoxml-XML files for display purposes" + @echo " linkcheck to check all external links for integrity" + @echo " doctest to run all doctests embedded in the documentation (if enabled)" + @echo " coverage to run coverage check of the documentation (if enabled)" + +clean: + rm -rf $(BUILDDIR)/* + +html: + $(SPHINXBUILD) -b html $(ALLSPHINXOPTS) $(BUILDDIR)/html + @echo + @echo "Build finished. The HTML pages are in $(BUILDDIR)/html." + +dirhtml: + $(SPHINXBUILD) -b dirhtml $(ALLSPHINXOPTS) $(BUILDDIR)/dirhtml + @echo + @echo "Build finished. The HTML pages are in $(BUILDDIR)/dirhtml." + +singlehtml: + $(SPHINXBUILD) -b singlehtml $(ALLSPHINXOPTS) $(BUILDDIR)/singlehtml + @echo + @echo "Build finished. The HTML page is in $(BUILDDIR)/singlehtml." + +pickle: + $(SPHINXBUILD) -b pickle $(ALLSPHINXOPTS) $(BUILDDIR)/pickle + @echo + @echo "Build finished; now you can process the pickle files." + +json: + $(SPHINXBUILD) -b json $(ALLSPHINXOPTS) $(BUILDDIR)/json + @echo + @echo "Build finished; now you can process the JSON files." + +htmlhelp: + $(SPHINXBUILD) -b htmlhelp $(ALLSPHINXOPTS) $(BUILDDIR)/htmlhelp + @echo + @echo "Build finished; now you can run HTML Help Workshop with the" \ + ".hhp project file in $(BUILDDIR)/htmlhelp." + +qthelp: + $(SPHINXBUILD) -b qthelp $(ALLSPHINXOPTS) $(BUILDDIR)/qthelp + @echo + @echo "Build finished; now you can run "qcollectiongenerator" with the" \ + ".qhcp project file in $(BUILDDIR)/qthelp, like this:" + @echo "# qcollectiongenerator $(BUILDDIR)/qthelp/Micro612genomicsworkshop.qhcp" + @echo "To view the help file:" + @echo "# assistant -collectionFile $(BUILDDIR)/qthelp/Micro612genomicsworkshop.qhc" + +applehelp: + $(SPHINXBUILD) -b applehelp $(ALLSPHINXOPTS) $(BUILDDIR)/applehelp + @echo + @echo "Build finished. The help book is in $(BUILDDIR)/applehelp." + @echo "N.B. You won't be able to view it unless you put it in" \ + "~/Library/Documentation/Help or install it in your application" \ + "bundle." + +devhelp: + $(SPHINXBUILD) -b devhelp $(ALLSPHINXOPTS) $(BUILDDIR)/devhelp + @echo + @echo "Build finished." + @echo "To view the help file:" + @echo "# mkdir -p $$HOME/.local/share/devhelp/Micro612genomicsworkshop" + @echo "# ln -s $(BUILDDIR)/devhelp $$HOME/.local/share/devhelp/Micro612genomicsworkshop" + @echo "# devhelp" + +epub: + $(SPHINXBUILD) -b epub $(ALLSPHINXOPTS) $(BUILDDIR)/epub + @echo + @echo "Build finished. The epub file is in $(BUILDDIR)/epub." + +latex: + $(SPHINXBUILD) -b latex $(ALLSPHINXOPTS) $(BUILDDIR)/latex + @echo + @echo "Build finished; the LaTeX files are in $(BUILDDIR)/latex." + @echo "Run \`make' in that directory to run these through (pdf)latex" \ + "(use \`make latexpdf' here to do that automatically)." + +latexpdf: + $(SPHINXBUILD) -b latex $(ALLSPHINXOPTS) $(BUILDDIR)/latex + @echo "Running LaTeX files through pdflatex..." + $(MAKE) -C $(BUILDDIR)/latex all-pdf + @echo "pdflatex finished; the PDF files are in $(BUILDDIR)/latex." + +latexpdfja: + $(SPHINXBUILD) -b latex $(ALLSPHINXOPTS) $(BUILDDIR)/latex + @echo "Running LaTeX files through platex and dvipdfmx..." + $(MAKE) -C $(BUILDDIR)/latex all-pdf-ja + @echo "pdflatex finished; the PDF files are in $(BUILDDIR)/latex." + +text: + $(SPHINXBUILD) -b text $(ALLSPHINXOPTS) $(BUILDDIR)/text + @echo + @echo "Build finished. The text files are in $(BUILDDIR)/text." + +man: + $(SPHINXBUILD) -b man $(ALLSPHINXOPTS) $(BUILDDIR)/man + @echo + @echo "Build finished. The manual pages are in $(BUILDDIR)/man." + +texinfo: + $(SPHINXBUILD) -b texinfo $(ALLSPHINXOPTS) $(BUILDDIR)/texinfo + @echo + @echo "Build finished. The Texinfo files are in $(BUILDDIR)/texinfo." + @echo "Run \`make' in that directory to run these through makeinfo" \ + "(use \`make info' here to do that automatically)." + +info: + $(SPHINXBUILD) -b texinfo $(ALLSPHINXOPTS) $(BUILDDIR)/texinfo + @echo "Running Texinfo files through makeinfo..." + make -C $(BUILDDIR)/texinfo info + @echo "makeinfo finished; the Info files are in $(BUILDDIR)/texinfo." + +gettext: + $(SPHINXBUILD) -b gettext $(I18NSPHINXOPTS) $(BUILDDIR)/locale + @echo + @echo "Build finished. The message catalogs are in $(BUILDDIR)/locale." + +changes: + $(SPHINXBUILD) -b changes $(ALLSPHINXOPTS) $(BUILDDIR)/changes + @echo + @echo "The overview file is in $(BUILDDIR)/changes." + +linkcheck: + $(SPHINXBUILD) -b linkcheck $(ALLSPHINXOPTS) $(BUILDDIR)/linkcheck + @echo + @echo "Link check complete; look for any errors in the above output " \ + "or in $(BUILDDIR)/linkcheck/output.txt." + +doctest: + $(SPHINXBUILD) -b doctest $(ALLSPHINXOPTS) $(BUILDDIR)/doctest + @echo "Testing of doctests in the sources finished, look at the " \ + "results in $(BUILDDIR)/doctest/output.txt." + +coverage: + $(SPHINXBUILD) -b coverage $(ALLSPHINXOPTS) $(BUILDDIR)/coverage + @echo "Testing of coverage in the sources finished, look at the " \ + "results in $(BUILDDIR)/coverage/python.txt." + +xml: + $(SPHINXBUILD) -b xml $(ALLSPHINXOPTS) $(BUILDDIR)/xml + @echo + @echo "Build finished. The XML files are in $(BUILDDIR)/xml." + +pseudoxml: + $(SPHINXBUILD) -b pseudoxml $(ALLSPHINXOPTS) $(BUILDDIR)/pseudoxml + @echo + @echo "Build finished. The pseudo-XML files are in $(BUILDDIR)/pseudoxml." diff --git a/docs/build/doctrees/day1_afternoon.doctree b/docs/build/doctrees/day1_afternoon.doctree new file mode 100644 index 0000000..c246cd7 Binary files /dev/null and b/docs/build/doctrees/day1_afternoon.doctree differ diff --git a/docs/build/doctrees/day1_morning.doctree b/docs/build/doctrees/day1_morning.doctree new file mode 100644 index 0000000..b893756 Binary files /dev/null and b/docs/build/doctrees/day1_morning.doctree differ diff --git a/docs/build/doctrees/day2_afternoon.doctree b/docs/build/doctrees/day2_afternoon.doctree new file mode 100644 index 0000000..72f39ce Binary files /dev/null and b/docs/build/doctrees/day2_afternoon.doctree differ diff --git a/docs/build/doctrees/day2_morning.doctree b/docs/build/doctrees/day2_morning.doctree new file mode 100644 index 0000000..0680164 Binary files /dev/null and b/docs/build/doctrees/day2_morning.doctree differ diff --git a/docs/build/doctrees/day3_afternoon.doctree b/docs/build/doctrees/day3_afternoon.doctree new file mode 100644 index 0000000..a03e0db Binary files /dev/null and b/docs/build/doctrees/day3_afternoon.doctree differ diff --git a/docs/build/doctrees/day3_morning.doctree b/docs/build/doctrees/day3_morning.doctree new file mode 100644 index 0000000..e8018aa Binary files /dev/null and b/docs/build/doctrees/day3_morning.doctree differ diff --git a/docs/build/doctrees/environment.pickle b/docs/build/doctrees/environment.pickle new file mode 100644 index 0000000..e820ccc Binary files /dev/null and b/docs/build/doctrees/environment.pickle differ diff --git a/docs/build/doctrees/index.doctree b/docs/build/doctrees/index.doctree new file mode 100644 index 0000000..c3990c3 Binary files /dev/null and b/docs/build/doctrees/index.doctree differ diff --git a/docs/build/doctrees/index_backup.doctree b/docs/build/doctrees/index_backup.doctree new file mode 100644 index 0000000..e8c3c22 Binary files /dev/null and b/docs/build/doctrees/index_backup.doctree differ diff --git a/docs/build/doctrees/index_temp.doctree b/docs/build/doctrees/index_temp.doctree new file mode 100644 index 0000000..3de65ca Binary files /dev/null and b/docs/build/doctrees/index_temp.doctree differ diff --git a/docs/build/doctrees/online_resources.doctree b/docs/build/doctrees/online_resources.doctree new file mode 100644 index 0000000..ac954b9 Binary files /dev/null and b/docs/build/doctrees/online_resources.doctree differ diff --git a/docs/build/doctrees/test.doctree b/docs/build/doctrees/test.doctree new file mode 100644 index 0000000..fee68b1 Binary files /dev/null and b/docs/build/doctrees/test.doctree differ diff --git a/docs/build/html/.buildinfo b/docs/build/html/.buildinfo new file mode 100644 index 0000000..3c2e1f1 --- /dev/null +++ b/docs/build/html/.buildinfo @@ -0,0 +1,4 @@ +# Sphinx build info version 1 +# This file hashes the configuration used when building these files. When it is not found, a full rebuild will be done. +config: 613a824ca420526f4ed8d641142d3e6e +tags: 645f666f9bcd5a90fca523b33c5a78b7 diff --git a/docs/build/html/_images/1.png b/docs/build/html/_images/1.png new file mode 100644 index 0000000..2c684ac Binary files /dev/null and b/docs/build/html/_images/1.png differ diff --git a/docs/build/html/_images/1_1.png b/docs/build/html/_images/1_1.png new file mode 100644 index 0000000..6745464 Binary files /dev/null and b/docs/build/html/_images/1_1.png differ diff --git a/docs/build/html/_images/2.png b/docs/build/html/_images/2.png new file mode 100644 index 0000000..eb2cfef Binary files /dev/null and b/docs/build/html/_images/2.png differ diff --git a/docs/build/html/_images/3.png b/docs/build/html/_images/3.png new file mode 100644 index 0000000..1664b14 Binary files /dev/null and b/docs/build/html/_images/3.png differ diff --git a/docs/build/html/_images/HET_variant.png b/docs/build/html/_images/HET_variant.png new file mode 100644 index 0000000..284955f Binary files /dev/null and b/docs/build/html/_images/HET_variant.png differ diff --git a/docs/build/html/_images/HET_variant_gene_selected.png b/docs/build/html/_images/HET_variant_gene_selected.png new file mode 100644 index 0000000..87eccc3 Binary files /dev/null and b/docs/build/html/_images/HET_variant_gene_selected.png differ diff --git a/docs/build/html/_images/aligned_reads_deletion.png b/docs/build/html/_images/aligned_reads_deletion.png new file mode 100644 index 0000000..60a924d Binary files /dev/null and b/docs/build/html/_images/aligned_reads_deletion.png differ diff --git a/docs/build/html/_images/beautiful.png b/docs/build/html/_images/beautiful.png new file mode 100644 index 0000000..fa7f432 Binary files /dev/null and b/docs/build/html/_images/beautiful.png differ diff --git a/docs/build/html/_images/graphs.png b/docs/build/html/_images/graphs.png new file mode 100644 index 0000000..39df74f Binary files /dev/null and b/docs/build/html/_images/graphs.png differ diff --git a/docs/build/html/_images/intro.png b/docs/build/html/_images/intro.png new file mode 100644 index 0000000..2357284 Binary files /dev/null and b/docs/build/html/_images/intro.png differ diff --git a/docs/build/html/_images/multiqc.jpeg b/docs/build/html/_images/multiqc.jpeg new file mode 100644 index 0000000..8ad7bfe Binary files /dev/null and b/docs/build/html/_images/multiqc.jpeg differ diff --git a/docs/build/html/_images/picard.png b/docs/build/html/_images/picard.png new file mode 100644 index 0000000..701b828 Binary files /dev/null and b/docs/build/html/_images/picard.png differ diff --git a/docs/build/html/_images/plot_1.png b/docs/build/html/_images/plot_1.png new file mode 100644 index 0000000..fa9c0e0 Binary files /dev/null and b/docs/build/html/_images/plot_1.png differ diff --git a/docs/build/html/_images/plot_2.png b/docs/build/html/_images/plot_2.png new file mode 100644 index 0000000..facddfe Binary files /dev/null and b/docs/build/html/_images/plot_2.png differ diff --git a/docs/build/html/_images/read_details.png b/docs/build/html/_images/read_details.png new file mode 100644 index 0000000..15c99c8 Binary files /dev/null and b/docs/build/html/_images/read_details.png differ diff --git a/docs/build/html/_images/select_graph.png b/docs/build/html/_images/select_graph.png new file mode 100644 index 0000000..5d13302 Binary files /dev/null and b/docs/build/html/_images/select_graph.png differ diff --git a/docs/build/html/_images/spandx.jpg b/docs/build/html/_images/spandx.jpg new file mode 100644 index 0000000..43e124c Binary files /dev/null and b/docs/build/html/_images/spandx.jpg differ diff --git a/docs/build/html/_images/spike_true.png b/docs/build/html/_images/spike_true.png new file mode 100644 index 0000000..3782999 Binary files /dev/null and b/docs/build/html/_images/spike_true.png differ diff --git a/docs/build/html/_images/trimm_parameters.png b/docs/build/html/_images/trimm_parameters.png new file mode 100644 index 0000000..406f7e4 Binary files /dev/null and b/docs/build/html/_images/trimm_parameters.png differ diff --git a/docs/build/html/_sources/day1_afternoon.txt b/docs/build/html/_sources/day1_afternoon.txt new file mode 100644 index 0000000..6618c2b --- /dev/null +++ b/docs/build/html/_sources/day1_afternoon.txt @@ -0,0 +1,602 @@ +Day 1 Afternoon +=============== +[[HOME]](index.html) + +Earlier this morning, We performed some quality control steps on our sequencing data to make it clean and usable for various downstream analysis. Now we will perform our first sequence analysis, specifically variant calling, and map these reads to a reference genome and try to find out the differences between them. + +Read Mapping is one of the most common Bioinformatics operations that needs to be carried out on NGS data. The main goal behind read mapping/aligning is to find the best possible reference genome position to which reads could be aligned. Reads are generally mapped to a reference genome sequence that is sufficiently closely related genome to accurately align reads. There are number of tools that can map reads to a reference genome and they differ from each other in algorithm, speed and accuracy. Most of these tools work by first building an index of reference sequence which works like a dictionary for fast search/lookup and then applying an alignment algorithm that uses these index to align short read sequences against the reference. + +These alignment has a vast number of uses, including: + +1) variant/SNP calling: Finding differences between your sequenced organism genome and the reference genome +2) coverage estimation: If you have sufficient reads to cover each position of reference genome. +3) gene expression analysis: determining the level of expression of each genes in a genome. + +In this session, we will be covering the important steps that are part of any Read mapping/Variant calling bioinformatics pipleine. + +Read Mapping +------------ +[[back to top]](day1_afternoon.html) +[[HOME]](index.html) + +![alt tag](1_1.png) + +**1. Navigate to your workshop home directory and copy day1_after directory from shared data directory.** + +``` +wd + +cp -r /scratch/micro612w18_fluxod/shared/data/day1_after ./ +``` + +We will be using trimmed clean reads that were obtained after running Trimmomatic on raw reads. + +**2. Map your reads against a finished reference genome using [BWA](http://bio-bwa.sourceforge.net/bwa.shtml "BWA manual")** + +Choosing the right read mapper is crucial and should be based on the type of analysis and data you are working with. Each aligners are meant to be better used with specific types of data, for example: + +For whole genome or whole exome sequencing data: Use BWA for long reads (> 50/100 bp), use Bowtie2 for short reads (< 50/100bp) +For transcriptomic data (RNA-Seq): use Splice-aware Mapper such as Tophat. (Not applicable for microbial data) + +Here, we will be using BWA aligner to map the reads against a reference genome, KPNIH1. + +BWA is one of the several read mappers that are based on Burrows-Wheeler transform algorithm. If you feel like challenging yourselves, you can read BWA paper [here](http://bioinformatics.oxfordjournals.org/content/25/14/1754.short) + +Read Mapping is a time-consuming step that involves searching the reference and finding the optimal location for the alignment for millions of reads. Creating an index file of a reference sequence for quick lookup/search operations significantly decreases the time required for read alignment. Imagine indexing a genome sequence like the index at the end of a book. If you want to know on which page a word appears or a chapter begins, it is much more efficient to look it up in a pre-built index than going through every page of the book. Similarly, an index of a large DNA sequence allows aligners to rapidly find shorter sequences embedded within it. + +Note: each read mapper has its own unique way of indexing a reference genome and therefore the reference index created by BWA cannot be used for Bowtie. (Most Bioinformatics tools nowadays require some kind of indexing or reference database creation) + +> ***i. To create BWA index of Reference, you need to run following command.*** + +Start a flux interactive session + +``` +iflux +``` + + +Navigate to day1_after folder that you recently copied and create a new folder Rush_KPC_266_varcall_result for saving this exercise's output. + +``` +d1a + +#or + +cd /scratch/micro612w18_fluxod/username/day1_after/ + +mkdir Rush_KPC_266_varcall_result + +``` + +Create bwa index for the reference genome. + +``` +bwa index KPNIH1.fasta +``` + +Also go ahead and create fai index file using samtools required by GATK in later downstream steps. + +``` +samtools faidx KPNIH1.fasta +``` + +> ***ii. Align reads to reference and redirect the output into SAM file*** + +Quoting BWA: +"BWA consists of three algorithms: BWA-backtrack, BWA-SW and BWA-MEM. The first algorithm is designed for Illumina sequence reads up to 100bp, while the rest two for longer sequences ranged from 70bp to 1Mbp. BWA-MEM and BWA-SW share similar features such as long-read support and split alignment, but BWA-MEM, which is the latest, is generally recommended for high-quality queries as it is faster and more accurate. BWA-MEM also has better performance than BWA-backtrack for 70-100bp Illumina reads." + +For other algorithms employed by BWA, you can refer to BWA [manual](http://bio-bwa.sourceforge.net/bwa.shtml "BWA manual") + +Now lets align both left and right end reads to our reference using BWA alignment algorithm 'mem'. + +``` + +bwa mem -M -R "@RG\tID:96\tSM:Rush_KPC_266_1_combine.fastq.gz\tLB:1\tPL:Illumina" -t 8 KPNIH1.fasta forward_paired.fq.gz reverse_paired.fq.gz > Rush_KPC_266_varcall_result/Rush_KPC_266__aln.sam + +``` + +Read group tells aligners/other tools that certain reads were sequenced together on a specific lane. If you have multiplexed samples in a single lane, you will get multiple samples in a single read group. If you sequenced the same sample in several lanes, you will have multiple read groups for the same sample. + +This string with -R flag says that all reads belongs to ID:96 and library LB:1; with sample name SM:Rush_KPC_266_1_combine.fastq.gz and was sequenced on illumina platform PL:Illumina. + +You can extract this information from fastq read header. (@M02127:96:000000000-AG04W:1:1101:13648:1481 1:N:0:44) + +**3. SAM/BAM manipulation and variant calling using [Samtools](http://www.htslib.org/doc/samtools.html "Samtools Manual")** + +> ***i. Change directory to results folder and look for BWA output:*** + +``` +cd Rush_KPC_266_varcall_result + +ls +``` + +The output of BWA and most of the short-reads aligners is a SAM file. SAM format is considered as the standard output for most read aligners and stands for Sequence Alignment/Map format. It is a TAB-delimited format that describes how each reads were aligned to the reference sequence. + +Lets explore first few lines of .sam file. + +``` + +head -n4 Rush_KPC_266__aln.sam + +``` + +example: + +``` + +@SQ SN:gi|661922017|gb|CP008827.1| LN:5394056 <=== Reference Genome name and its length +@RG ID:96 SM:Rush_KPC_266_1_combine.fastq.gz LB:1 PL:Illumina <=== sample read group info +@PG ID:bwa PN:bwa VN:0.7.12-r1039 CL:bwa mem -M -R @RG\tID:96\tSM:Rush_KPC_266_1_combine.fastq.gz\tLB:1\tPL:Illumina -t 8 KPNIH1.fasta forward_paired.fq.gz reverse_paired.fq.gz <== aligner command +M02127:96:000000000-AG04W:1:1101:23094:1725 99 gi|661922017|gb|CP008827.1| 4724728 60 250M = 4724852 295 GCTGCCTGCAGCATCTCAGCGGCTTTATCGGCTCGCAGCAGGTGCGGCTGGTGACCCTCTCCGGCGGCGTCGGCCCGTATATGACCGGTATCGGCCAGCTTGATGCCGCCTGCAGCGTCAGCATTATCCCGGCGCCGCTGCGGGTCTCTTCGGCGGAGGTCTCCGAGATCCTGCGCCGCGAGTCGAGCGTGCGCGACGTGATCCTCGCGGCGACGGCGGCGGACGCGGCGGTAGTCGGCCTTGGCGCCAT CCCCCGGGGGGGGGGEGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGFGGGGG@FGFGFFGGGGGGGGGGGGCFGBEGGGCFGGGFGDE>*CGEFCCFCEECCCCGGGDGE5E>5EEFEEGD=C=EDCE=EEECCC?C9CCECEDC@EF??>>@)7<6?6354,4 NM:i:2 MD:Z:161G77A10 AS:i:240 XS:i:0 RG:Z:96 + +``` + +The lines starting with "@" is a header section and contains information about reference genome, sample read group and the aligner command that was used for aligning the samples. The header section is followed by an alignment section information for each read. It contains 11 columns and an optional TAG option. + +Detailed information about these 11 columns can be obtained from this [pdf](https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0ahUKEwizkvfAk9rLAhXrm4MKHVXxC9kQFggdMAA&url=https%3A%2F%2Fsamtools.github.io%2Fhts-specs%2FSAMv1.pdf&usg=AFQjCNHFmjxTXKnxYqN0WpIFjZNylwPm0Q) document. + +The second column consists of coded bitwise flags where each code flag carries important information about the alignment. Open [this](https://broadinstitute.github.io/picard/explain-flags.html) site and enter the flag "99" to find out what it stands for. + +The last section "NM:i:2 MD:Z:161G77A10 AS:i:240 XS:i:0 RG:Z:96" is an optional tag section and varies for different aligners(specifications based on aligners). + +Here, + +NM tag tells number of changes necessary to make it equal to the reference(2 changes) + +MD tag tells you what positions in the read alignment are different from reference base and is used by variant callers to call SNP's. For example, The tag "MD:Z:161G77A10" implies that position 162 in the read carries a different base whereas the reference genome carries base "G" + +AS is an alignment score and XS:i:0 is an suboptimal alignment score. + +> ***ii. Convert SAM to BAM using SAMTOOLS:*** + +BAM is the compressed binary equivalent of SAM but are usually quite smaller in size than SAM format. Since, parsing through a SAM format is slow, Most of the downstream tools require SAM file to be converted to BAM so that it can be easily sorted and indexed. + +The below command will ask samtools to convert SAM format(-S) to BAM format(-b) + +``` +samtools view -Sb Rush_KPC_266__aln.sam > Rush_KPC_266__aln.bam +``` + +> ***iii. Sort BAM file using SAMTOOLS:*** + +Most of the downstream tools such as GATK requires your BAM file to be indexed and sorted by reference genome positions. + +Now before indexing this BAM file, we will sort the data by positions(default) using samtools. Some RNA Seq/Gene expression tools require it to be sorted by read name which is achieved by passing -n flag. + +``` +samtools sort Rush_KPC_266__aln.bam Rush_KPC_266__aln_sort +``` + +**4. Mark duplicates(PCR optical duplicates) and remove them using [PICARD](http://broadinstitute.github.io/picard/command-line-overview.html#MarkDuplicates "Picard MarkDuplicates")** + +Illumina sequencing involves PCR amplification of adapter ligated DNA fragments so that we have enough starting material for sequencing. Therefore, some amount of duplicates are inevitable. Ideally, you amplify upto ~65 fold(4% reads) but higher rates of PCR duplicates e.g. 30% arise when people have too little starting material such that greater amplification of the library is needed or some smaller fragments which are easier to PCR amplify, end up over-represented. + +For an in-depth explanation about how PCR duplicates arise in sequencing, please refer to this interesting [blog](http://www.cureffi.org/2012/12/11/how-pcr-duplicates-arise-in-next-generation-sequencing/) + +Picard identifies duplicates by searching reads that have same start position on reference or in PE reads same start for both ends. It will choose a representative from each group of duplicate reads based on best base quality scores and other criteria and retain it while removing other duplicates. This step plays a significant role in removing false positive variant calls(such as sequencing error) during variant calling that are represented by PCR duplicate reads. + +![alt tag](picard.png) + +> ***i. Create a dictionary for reference fasta file required by PICARD*** + +Make sure you are in Rush_KPC_266_varcall_result directory and are giving proper reference genome path (day1_after directory). + +``` + +java -jar /scratch/micro612w18_fluxod/shared/bin/picard-tools-1.130/picard.jar CreateSequenceDictionary REFERENCE=../KPNIH1.fasta OUTPUT=../KPNIH1.dict + +``` + +> ***ii. Run PICARD for removing duplicates.*** + +``` + +java -jar /scratch/micro612w18_fluxod/shared/bin/picard-tools-1.130/picard.jar MarkDuplicates REMOVE_DUPLICATES=true INPUT=Rush_KPC_266__aln_sort.bam OUTPUT=Rush_KPC_266__aln_marked.bam METRICS_FILE=Rush_KPC_266__markduplicates_metrics CREATE_INDEX=true VALIDATION_STRINGENCY=LENIENT + +``` + +The output of Picard remove duplicate step is a new bam file "Rush_KPC_266__aln_marked.bam" without PCR duplicates. + +You will need to index this new marked.bam file for further processing. + +> ***iii. Index these marked bam file again using SAMTOOLS(For input in Artemis later)*** + +``` +samtools index Rush_KPC_266__aln_marked.bam +``` + +Open the markduplicates metrics file and glance through the number and percentage of PCR duplicates removed. +For more details about each metrics in a metrics file, please refer to [this](https://broadinstitute.github.io/picard/picard-metric-definitions.html#DuplicationMetrics) + +``` +nano Rush_KPC_266__markduplicates_metrics + +#or + +less Rush_KPC_266__markduplicates_metrics +``` + +Generate Alignment Statistics +----------------------------- + +Often, while analyzing sequencing data, we are required to make sure that our analysis steps are correct. Some statistics about our analysis will help us in making that decision. So Lets try to get some statistics about various outputs that were created using the above steps and check if everything makes sense. + +> ***i. Collect Alignment statistics using Picard*** + +Run the below command on your marked.bam file + +``` + +java -jar /scratch/micro612w18_fluxod/shared/bin/picard-tools-1.130/picard.jar CollectAlignmentSummaryMetrics R=../KPNIH1.fasta I=Rush_KPC_266__aln_marked.bam O=AlignmentSummaryMetrics.txt + +``` +Open the file AlignmentSummaryMetrics.txt and explore various statistics. It will generate various statistics and the definition for each can be found [here](http://broadinstitute.github.io/picard/picard-metric-definitions.html#AlignmentSummaryMetrics) + +The file AlignmentSummaryMetrics.txt contains many columns and at times it becomes difficult to extract information from a particular column if we dont know the exact column number. Run the below unix gem to print column name with its number. + +``` +grep 'CATEGORY' AlignmentSummaryMetrics.txt | tr '\t' '\n' | cat --number +``` + +- Question: Extract alignment percentage from AlignmentSummaryMetrics file. (% of reads aligned to reference genome) + + + +``` +grep -v '#' AlignmentSummaryMetrics.txt | cut -f7 +``` + +Try to explore other statistics and their definitions from Picard AlignmentSummaryMetrics [link](http://broadinstitute.github.io/picard/picard-metric-definitions.html#AlignmentSummaryMetrics) + +> ***ii. Estimate read coverage/read depth using Picard*** + +Read coverage/depth describes the average number of reads that align to, or "cover," known reference bases. The sequencing depth is one of the most crucial issue in the design of next-generation sequencing experiments. This [paper](https://www.nature.com/articles/nrg3642) review current guidelines and precedents on the issue of coverage, as well as their underlying considerations, for four major study designs, which include de novo genome sequencing, genome resequencing, transcriptome sequencing and genomic location analyses + +After read mapping, it is important to make sure that the reference bases are represented by enough read depth before making any inferences such as variant calling. + +``` +java -jar /scratch/micro612w18_fluxod/shared/bin/picard-tools-1.130/picard.jar CollectWgsMetrics R=../KPNIH1.fasta I=Rush_KPC_266__aln_marked.bam O=WgsMetrics.txt + +``` + +Open the file "WgsMetrics.txt" and explore various statistics. It will generate various statistics and the definition for each can be found [here](https://broadinstitute.github.io/picard/picard-metric-definitions.html#CollectWgsMetrics.WgsMetrics). + +Print column names + +``` +grep 'GENOME_TERRITORY' WgsMetrics.txt | tr '\t' '\n' | cat --number +``` + +Since "WgsMetrics.txt" also contains histogram information, we will run commands on only the first few lines to extract information. + + +- Question: Extract mean coverage information from "WgsMetrics.txt" + + + +``` +grep -v '#' WgsMetrics.txt | cut -f2 | head -n3 + +``` + +> Question: Percentage of bases that attained at least 5X sequence coverage. + +``` +grep -v '#' WgsMetrics.txt | cut -f13 | head -n3 +``` + +> Question: Percentage of bases that had siginificantly high coverage. Regions with unusually high depth sometimes indicate either repetitive regions or PCR amplification bias. + +``` +grep -v '#' WgsMetrics.txt | cut -f25 | head -n3 +``` + + + +Variant Calling and Filteration +------------------------------- +[[back to top]](day1_afternoon.html) +[[HOME]](index.html) + +One of the downstream uses of read mapping is finding differences between our sequence data against a reference. This step is achieved by carrying out variant calling using any of the variant callers (samtools, gatk, freebayes etc). Each variant caller uses a different statistical framework to discover SNPs and other types of mutations. For those of you who are interested in finding out more about the statistics involved, please refer to [this]() samtools paper, one of most commonly used variant callers. + +The [GATK best practices guide](https://www.broadinstitute.org/gatk/guide/best-practices.php) will provide more details about various steps that you can incorporate in your analysis. + +There are many published articles that compare different variant callers but this is a very interesting [blog post](https://bcbio.wordpress.com/2013/10/21/updated-comparison-of-variant-detection-methods-ensemble-freebayes-and-minimal-bam-preparation-pipelines/) that compares the performance and accuracy of different variant callers. + +Here we will use samtools mpileup to perform this operation on our BAM file and generate a VCF (variant call format) file. + +**1. Call variants using [samtools](http://www.htslib.org/doc/samtools.html "samtools manual") mpileup and [bcftools](https://samtools.github.io/bcftools/bcftools.html "bcftools")** + +``` + +samtools mpileup -ug -f ../KPNIH1.fasta Rush_KPC_266__aln_marked.bam | bcftools call -O v -v -c -o Rush_KPC_266__aln_mpileup_raw.vcf + + +#In the above command, we are using samtools mpileup to generate a pileup formatted file from BAM alignments and genotype likelihoods (-g flag) in BCF format (binary version of vcf). This bcf output is then piped to bcftools, which calls variants and outputs them in vcf format (-c flag for using consensus calling algorithm and -v for outputting variants positions only) + + +``` + +Let's go through the VCF file and try to understand a few important VCF specifications and criteria that we can use for filtering low confidence SNPs. + +``` +less Rush_KPC_266__aln_mpileup_raw.vcf +``` + +1. CHROM, POS: 1st and 2nd column represent the reference genome name and reference base position where a variant was called +2. REF, ALT: 4th and 5th columns represent the reference allele at the position and alternate/variant allele called from the reads +3. QUAL: Phred-scaled quality score for the assertion made in ALT +4. INFO: Additional information that provides technical scores and obervations for each variant. Important parameters to look for: Depth (DP), mapping quality (MQ), FQ (consensus score), allele frequency for each ALT allele (AF) + +VCF format stores a large variety of information and you can find more details in [this pdf](https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0ahUKEwit35bvktzLAhVHkoMKHe3hAhYQFggdMAA&url=https%3A%2F%2Fsamtools.github.io%2Fhts-specs%2FVCFv4.2.pdf&usg=AFQjCNGFka33WgRmvOfOfp4nSaCzkV95HA&sig2=tPLD6jW5ALombN3ALRiCZg&cad=rja). + +Lets count the number of raw unfiltered variants found: + +``` +grep -v '#' Rush_KPC_266__aln_mpileup_raw.vcf | wc -l + +grep -v '#' Rush_KPC_266__aln_mpileup_raw.vcf | grep 'INDEL' | wc -l +``` +**2. Variant filtering and processed file generation using GATK and vcftools** + +> ***i. Variant filtering using [GATK](https://www.broadinstitute.org/gatk/guide/tooldocs/org_broadinstitute_gatk_tools_walkers_filters_VariantFiltration.php "GATK Variant Filteration"):*** + +There are various tools that can you can try for variant filteration such as vcftools, GATK, vcfutils etc. Here we will use GATK VariantFiltration utility to filter out low confidence variants. + +Run this command on raw vcf file Rush_KPC_266__aln_mpileup_raw.vcf. + +``` + +java -jar /scratch/micro612w18_fluxod/shared/bin/GenomeAnalysisTK-3.3-0/GenomeAnalysisTK.jar -T VariantFiltration -R ../KPNIH1.fasta -o Rush_KPC_266__filter_gatk.vcf --variant Rush_KPC_266__aln_mpileup_raw.vcf --filterExpression "FQ < 0.025 && MQ > 50 && QUAL > 100 && DP > 15" --filterName pass_filter + +``` + +This command will add a 'pass_filter' text in the 7th FILTER column for those variant positions that passed our filtered criteria: + +1. DP: Depth of reads. More than 15 reads supporting a variant call at these position. +2. MQ: Root Mean Square Mapping Quality. This provides an estimation of the overall mapping quality of reads supporting a variant call. The root mean square is equivalent to the mean of the mapping qualities plus the standard deviation of the mapping qualities. +3. QUAL stands for phred-scaled quality score for the assertion made in ALT. High QUAL scores indicate high confidence calls. +4. FQ stands for consensus quality. A positive value indicates heterozygote and a negative value indicates homozygous. In bacterial analysis, this plays an important role in defining if a gene was duplicated in a particular sample. We will learn more about this later while visualizing our BAM files in Artemis. + +Check if the pass_filter was added properly and count the number of variants that passed the filter. + +``` +grep 'pass_filter' Rush_KPC_266__filter_gatk.vcf | head + +``` + +***Caveat: This filter criteria should be applied carefully after giving some thought to the type of library, coverage, average mapping quality, type of analysis and other such requirements.*** + +> ***ii. Remove indels and keep only SNPS that passed our filter criteria using [the vcftools manual](http://vcftools.sourceforge.net/man_latest.html):*** + +vcftools is a program package that is especially written to work with vcf file formats. It thus saves your precious time by making available all the common operations that you would like to perform on the vcf file using a single command. One such operation is removing INDEL information from a vcf file. + +Now, let's remove indels from our final vcf file and keep only variants that passed our filter criteria (positions with pass_filter in their FILTER column). + +``` + +vcftools --vcf Rush_KPC_266__filter_gatk.vcf --keep-filtered pass_filter --remove-indels --recode --recode-INFO-all --out Rush_KPC_266__filter_onlysnp + +``` + + + +***3. Variant Annotation using snpEff*** + +Variant annotation is one of the crucial steps in any variant calling pipeline. Most of the variant annotation tools create their own database or use an external one to assign function and predict the effect of variants on genes. We will try to touch base on some basic steps of annotating variants in our vcf file using snpEff. + +You can annotate these variants before performing any filtering steps that we did earlier or you can decide to annotate just the final filtered variants. + +snpEff contains a database of about 20,000 reference genomes built from trusted and public sources. Lets check if snpEff contains a database of our reference genome. + +> ***i. Check snpEff internal database for your reference genome:*** + +``` +java -jar /scratch/micro612w18_fluxod/shared/bin/snpEff/snpEff.jar databases | grep 'kpnih1' +``` +Note down the genome id for your reference genome KPNIH1. In this case: GCA_000281535.2.29 + +> ***ii. Change the chromosome name in the vcf file to ‘Chromosome’ for snpEff reference database compatibility.*** + +``` +sed -i 's/gi.*|/Chromosome/g' Rush_KPC_266__filter_gatk.vcf +``` +> ***iii. Run snpEff for variant annotation.*** + +``` + +java -jar /scratch/micro612w18_fluxod/shared/bin/snpEff/snpEff.jar -onlyProtein -no-upstream -no-downstream -no-intergenic -v GCA_000281535.2.29 Rush_KPC_266__filter_gatk.vcf > Rush_KPC_266__filter_gatk_ann.vcf -csvStats Rush_KPC_266__filter_gatk_stats + +``` + +The STDOUT will print out some useful details such as genome name and version being used, no. of genes, protein-coding genes and transcripts, chromosome and plasmid names etc. + +snpEff will add an extra field named 'ANN' at the end of INFO field. Lets go through the ANN field added after annotation step. + +``` +grep 'ANN=' Rush_KPC_266__filter_gatk_ann.vcf | head -n1 + +or to print on seperate lines + +grep -o 'ANN=.*GT:PL' Rush_KPC_266__filter_gatk_ann.vcf | head -n1 | tr '|' '\n' | cat --number +``` + +The ANN field will provide information such as the impact of variants (HIGH/LOW/MODERATE/MODIFIER) on genes and transcripts along with other useful annotations. + +Detailed information of the ANN field and sequence ontology terms that it uses can be found [here](http://snpeff.sourceforge.net/SnpEff_manual.html#input). + +Let's see how many SNPs and Indels passed the filter using grep and wc. + +``` + +No. of Variants: +grep '^Chromosome' Rush_KPC_266__filter_gatk_ann.vcf | wc -l + +No. of Variants that passed the filter: +grep '^Chromosome.*pass_filter' Rush_KPC_266__filter_gatk_ann.vcf | wc -l + +No. of SNPs that passed the filter: +grep '^Chromosome.*pass_filter' Rush_KPC_266__filter_gatk_ann.vcf | grep -v 'INDEL' | wc -l + +No. of Indels that passed the filter: +grep '^Chromosome.*pass_filter' Rush_KPC_266__filter_gatk_ann.vcf | grep 'INDEL' | wc -l + + +``` + +Visualize BAM and VCF files in [Artemis](http://www.sanger.ac.uk/science/tools/artemis) +---------------------------------------- +[[back to top]](day1_afternoon.html) +[[HOME]](index.html) + +While these various statistical/text analyses are helpful, visualization of all of these various output files can help in making some significant decisions and inferences about your entire analysis. There are a wide variety of visualization tools out there that you can choose from for this purpose. + +We will be using [Artemis](http://www.sanger.ac.uk/science/tools/artemis) here, developed by the Sanger Institute for viewing BAM and vcf files for manual inspection of some of the variants. + + +- ***Required Input files:*** + +> KPNIH1 reference fasta +> KPNIH1 genbank file +> Rush_KPC_266__aln_marked.bam +> Rush_KPC_266__aln_marked.bam.bai +> Rush_KPC_266__filter_gatk_ann.vcf.gz +> Rush_KPC_266__filter_gatk_ann.vcf.gz.tbi + +Let's make a seperate folder (make sure you are in the Rush_KPC_266_varcall_result folder) for the files that we need for visualization and copy it to that folder + +``` + +mkdir Artemis_files + +cp ../KPNIH1.fasta ../KPNIH.gb Rush_KPC_266__aln_marked.bam Rush_KPC_266__aln_marked.bam.bai Rush_KPC_266__filter_gatk_ann.vcf Artemis_files/ + +``` + +We need to replace the genome name that we changed earlier for snpEff. (Make sure you are in Artemis_files folder) + +``` + +cd Artemis_files + +sed -i 's/Chromosome/gi|661922017|gb|CP008827.1|/g' Rush_KPC_266__filter_gatk_ann.vcf + +bgzip Rush_KPC_266__filter_gatk_ann.vcf + +tabix Rush_KPC_266__filter_gatk_ann.vcf.gz +``` + +Open a new terminal and run the scp command or cyberduck to get these files to your local system. + +``` + +scp -r username@flux-xfer.arc-ts.umich.edu:/scratch/micro612w18_fluxod/username/day1_after/Rush_KPC_266_varcall_result/Artemis_files/ /path-to-local-directory/ + +#You can use ~/Desktop/ as your local directory path +``` + +Start Artemis. + +Set your working directory to Artemis_files (the Artemis_files folder that you copied to your local system) by clicking the browse button and click OK. + +Now go to the top left File options and select Open File Manager. You should see the folder Artemis_files. Expand it and select KPNIH.gb file. A new window should open displaying your features stored in a genbank file. + +Now open the BAM file by selecting File (Top left corner) -> Read BAM/VCF file -> Select -> Rush_KPC_266__aln_marked.bam -> OK + +Reads aligned to your reference are displayed as stacked at the top panel of Artemis. The reads are color-coded so that paired reads are blue and those with an inversion are red. Reads that do not have a mapped mate are black and are optionally shown in the inferred insert size view. In the stack view, duplicated reads that span the same region are collapsed into one green line. + +Now right click on any of the stacked reads and Go to Graph and select Coverage (screenshot below). + +Now right click on any of the stacked reads and Go to Show and select SNP marks to show SNPs in red marks. + +![alt tag](select_graph.png) + +Follow the same procedure and select SNP graph. Adjust the gene features panel height to show all the graph in a window. + +![alt tag](graphs.png) + +Play around by moving the genbank panel cursor to look at coverage and SNP density across the genome. This will let you look at any regions where the coverage or SNP density is unusually high or low. + +If you click a read, its mate pair will also be selected. If the cursor hovers over a read for long enough details of that read will appear in a small box. For more details of the read, right-click and select 'Show details of: READ NAME' (last option in list) from the +menu (screenshot below). This will open up a new window giving you some useful details such as mapping quality, coordinates etc. + +![alt tag](read_details.png) + +The snps are denoted by red marks as observed inside the reads. Go to one of the SNPs in the VCF file (Position: 50195) by directly navigating to the position. For this, select Goto at the top -> select Navigator -> Type the position in Goto Base box + +You will notice a spike in the middle of the SNP graph window. This is one of the SNPs that passed all our filter criteria. (Screenshot) + +![alt tag](spike_true.png) + +Lets try to see an example of HET variant. Variant positions where more than one allele (variant) with sufficiently high read depth are observed are considered HET type variants. + +For this, click on tje Goto option at the top and select navigator. Type 321818 in Goto Base box and click Goto. + +You will see a thick spike in the SNP graph as well as thick red vertical line in BAM panel. Also notice the sudden spike in the coverage for this particular region compared to its flanking region (the region before and after a selected region). The coverage here is more than 300 which is unusually high compared to the entire genome coverage. This means that more than one allele with high quality and depth were observed at these positions so we cannot decide which one of these is a true variant. We removed these types of variants during our Variant Filteration step using the criteria FQ. (If the FQ is unusually high, it is suggestive of a HET variant and negative FQ value is a suggestive of true variant as observed in the mapped reads) + +![alt tag](HET_variant.png) + +Now select the gene right below this spiked region. Right click on this gene (KPNIH1_RS01560) and select Zoom to Selection. + +![alt tag](HET_variant_gene_selected.png) + +Check the details about gene by selecting View -> Selected Features + +You can inspect these type of HET variants later for any gene duplication or copy number analysis (by extracting variant positions with high FQ values). Addition of these details will give a better resolution while inferring phylogenetic trees. + +Play around with Artemis to look at what other kind of information you can find from these BAM and vcf files. Also refer to the manual at the [Artemis Homepage](http://www.sanger.ac.uk/science/tools/artemis) for full information about its usage. + +[[back to top]](day1_afternoon.html) +[[HOME]](index.html) + + +VRE variant calling analysis +---------------------------- + +Today, we learned how to assess the quality, perform quality trimming and variant calling to find variants between the sample and reference genome. This exercise requires you to apply these tools and commands on a new data set. These samples both come from a patient infected with VRE before and after treatment with daptomycin. The first sample was the patients initial sample and is susceptible to daptomycin, and the second was after daptomycin resistance emerged during treatment. Your goal is to map reads from the resistant genome to the susceptible reference and search for variants that may be associated with resistance. To accomplish this you will run the programs from this session to generate filtered variant files (VCF), and then explore these variants in Artemis to see what genes they are in. To help with your interpretation, see if you see any genes hit that were reported in this [paper](http://www.nejm.org/doi/full/10.1056/nejmoa1011138), which was the first to idenitfy putative daptomycin resistance loci. + +- Use VRE_daptoS_ref_strain.fa as your reference genome and VRE_daptoS_gene_annot.gff annotation file for Artemis. + +- This is how the command and tools workflow should look like: + +>1. FastQC to check the quality of reads(you can skip here for time) +>2. Trimmomatic to remove bad quality data(you can skip here for time) +>3. Prepare reference genome index for BWA and align reads to reference genome +>4. SAM/BAM manipulation using samtools +>5. Remove duplicates using picard(dont forget to create a dictionary for reference fasta file required by PICARD) +>6. Index marked bam file generated by picard using SAMTOOLS(For input in Artemis later) +>7. Variant calling using samtools +>8. Variant Filteration using GATK +>9. Visualize BAM and VCF files in Artemis diff --git a/docs/build/html/_sources/day1_morning.txt b/docs/build/html/_sources/day1_morning.txt new file mode 100644 index 0000000..0704e1e --- /dev/null +++ b/docs/build/html/_sources/day1_morning.txt @@ -0,0 +1,654 @@ +Day 1 Morning +============= +[[HOME]](index.html) + +Installing and setting up Cyberduck for file transfer +----------------------------------------------------- + +During workshop, we will transfer different output files from flux to your local system. Cyberduck makes it easier to drag and drop any remote file onto your local system and vice versa. Of course, you can use "scp" to transfer files but Cyberduck provides a graphical interface to manage file transfer and helps avoid typing long file paths and commands. + +> ***1. Go to [this](https://cyberduck.io/) cyberduck website and download the executable for your respective operating system.*** + +> ***2. Double-click on the downloaded zip file to unzip it and double click cyberduck icon.*** + +> ***3. Type sftp://flux-xfer.arc-ts.umich.edu in quickconnect bar, press enter and enter your flux username and password.*** + +> ***4. This will take you to your flux home directory /home/username. Select "Go" from tool bar at the top then select "Go to folder" and enter workshop home directory path: /scratch/micro612w18_fluxod/*** + +To transfer or upload a file, you can drag and drop it into the location you want. + + +Getting your data onto Flux and setting up environment variable +--------------------------------------------------------------- + +**Log in to Flux** + + +``` +ssh username@flux-login.arc-ts.umich.edu +``` + + + +**Setting up environment variables in .bashrc file so your environment is all set for genomic analysis!** + +Environment variables are the variables/values that describe the environment in which programs run in. All the programs and scripts on your unix system use these variables for extracting information such as: + +- What is my current working directory?, +- Where are temporary files stored?, +- Where are perl/python libraries?, +- Where is Blast installed? etc. + +In addition to environment variables that are set up by system administators, each user can set their own environment variables to customize their experience. This may sound like something super advanced that isn't relevant to beginners, but that's not true! + +Some examples of ways that we will use environment variables in the class are: + +1) create shortcuts for directories that you frequently go to, + +2) tell unix where frequently used programs live, so you don't have to put the full path name each time you use it and + +3) setup a shortcut for getting on a cluster node, so that you don't have to write out the full command each time. + +One way to set your environment variables would be to manually set up these variables everytime you log in, but this would be extremely tedious and inefficient. So, Unix has setup a way around this, which is to put your environment variable assignments in special files called .bashrc or .bash_profile. Every user has one or both of these files in their home directory, and what's special about them is that the commands in them are executed every time you login. So, if you simply set your environmental variable assignments in one of these files, your environment will be setup just the way you want it each time you login! + +All the softwares/tools that we need in this workshop are installed in a directory "/scratch/micro612w18_fluxod/shared/bin/" and we want the shell to look for these installed tools in this directory. For this, We will save the full path to these tools in an environment variable PATH. + +> ***i. Make a backup copy of bashrc file in case something goes wrong.*** + +``` + +cp ~/.bashrc ~/bashrc_backup + +#Note: "~/" represents your home directory. On flux, these means /home/username + +``` + +> ***ii. Open ~/.bashrc file using any text editor and add the following lines to your .bashrc file.*** + + +
+ Click here to expand entries + +``` +##Micro612 Workshop ENV + +#Aliases +alias iflux='qsub -I -V -l nodes=1:ppn=4,pmem=4000mb,walltime=1:00:00:00 -q fluxod -l qos=flux -A micro612w18_fluxod' +alias wd='cd /scratch/micro612w18_fluxod/username/' +alias d1m='cd /scratch/micro612w18_fluxod/username/day1_morn' +alias d1a='cd /scratch/micro612w18_fluxod/username/day1_after' +alias d2m='cd /scratch/micro612w18_fluxod/username/day2_morn' +alias d2a='cd /scratch/micro612w18_fluxod/username/day2_after' +alias d3m='cd /scratch/micro612w18_fluxod/username/day3_morn' +alias d3a='cd /scratch/micro612w18_fluxod/username/day3_after' + + +#Flux Modules +module load perl-modules + +#Perl Libraries +export PERL5LIB=/scratch/micro612w18_fluxod/shared/bin/PAGIT/lib:/scratch/micro612w18_fluxod/shared/bin/vcftools_0.1.12b/perl:$PERL5LIB +export PERL5LIB=/scratch/micro612w18_fluxod/shared/perl_libs:$PERL5LIB + +#Bioinformatics Tools +export PATH=$PATH:/scratch/micro612w18_fluxod/shared/bin/ncbi-blast-2.7.1+/bin/ +export PATH=$PATH:/scratch/micro612w18_fluxod/shared/bin/MultiQC/build/scripts-2.7/ +export PATH=$PATH:/scratch/micro612w18_fluxod/shared/bin/mauve_snapshot_2015-02-13/linux-x64/ +export PATH=$PATH:/scratch/micro612w18_fluxod/shared/bin/vcftools_0.1.12b/perl/ +export PATH=$PATH:/scratch/micro612w18_fluxod/shared/bin/tabix-0.2.6/ +export PATH=$PATH:/scratch/micro612w18_fluxod/shared/bin/bwa-0.7.12/ +export PATH=$PATH:/scratch/micro612w18_fluxod/shared/bin/Trimmomatic/ +export PATH=$PATH:/scratch/micro612w18_fluxod/shared/bin/bcftools-1.2/ +export PATH=$PATH:/scratch/micro612w18_fluxod/shared/bin/samtools-1.2/ +export PATH=$PATH:/scratch/micro612w18_fluxod/shared/bin/sratoolkit/bin/ +export PATH=$PATH:/scratch/micro612w18_fluxod/shared/bin/Spades/bin/ +export PATH=$PATH:/scratch/micro612w18_fluxod/shared/bin/FastQC/ +export PATH=$PATH:/scratch/micro612w18_fluxod/shared/bin/GenomeAnalysisTK-3.3-0/ +export PATH=$PATH:/scratch/micro612w18_fluxod/shared/bin/picard-tools-1.130/ +export PATH=$PATH:/scratch/micro612w18_fluxod/shared/bin/qualimap_v2.1/ +export PATH=$PATH:/scratch/micro612w18_fluxod/shared/bin/vcftools_0.1.12b/bin/ +export PATH=$PATH:/scratch/micro612w18_fluxod/shared/bin/snpEff/ +export PATH=$PATH:/scratch/micro612w18_fluxod/shared/bin/PAGIT/ABACAS/ +export PATH=$PATH:/scratch/micro612w18_fluxod/shared/bin/blast-2.2.26/bin/ +export PATH=$PATH:/scratch/micro612w18_fluxod/shared/bin/quast/ +export PATH=$PATH:/scratch/micro612w18_fluxod/shared/bin/MUMmer3.23/ +export PATH=$PATH:/scratch/micro612w18_fluxod/shared/bin/fastq_screen_v0.5.2/ +export PATH=$PATH:/scratch/micro612w18_fluxod/shared/bin/prokka-1.11/bin/ +export PATH=$PATH:/scratch/micro612w18_fluxod/shared/bin/LS-BSR-master/ +export PATH=$PATH:/scratch/micro612w18_fluxod/shared/bin/bowtie2-2.2.6/ +export PATH=$PATH:/scratch/micro612w18_fluxod/shared/bin/mcl-14-137/src/alien/oxygen/src/ + +``` +
+ + +Note: Replace "username" under alias shortcuts with your own umich "uniqname". In the text editor, nano, you can do this by + +- typing Ctrl + \ and You will then be prompted to type in your search string (here, username). +- Press return. Then you will be prompted to enter what you want to replace "username" with (here, your uniqname). +- Press return. Then press a to replace all incidences or y to accept each incidence one by one. + +You can also customize the alias name such as wd, d1m etc. catering to your own need and convenience. + +The above environment settings will set various shortcuts such as "iflux" for entering interactive flux session, "wd" to navigate to your workshop directory, call necessary flux modules and perl libraries required by certain tools and finally sets the path for bioinformatics programs that we will run during the workshop. + +> ***iii. Save the file and Source .bashrc file to make these changes permanent.*** + +``` + +source ~/.bashrc + +``` + +> ***iv. Check if the $PATH environment variable is updated*** + +``` + +echo $PATH + +#You will see a long list of paths that has been added to your $PATH variable + +wd + +``` + +You should be in your workshop working directory that is /scratch/micro612w18_fluxod/username + + + + +Unix is your friend +------------------- + +Up until now you’ve probably accessed sequence data from NCBI by going to the website, laboriously clicking around and finally finding and downloading the data you want. + +There are a lot of reasons that is not ideal: + +- It’s frustrating and slow to deal with the web interface +- It can be hard to keep track of where the data came from and exactly which version of a sequence you downloaded +- Its not conducive to downloading lots of sequence data + +To download sequence data in Unix you can use a variety of commands (e.g. sftp, wget, curl). Here, we will use the curl command to download some genome assemblies from NCBI ftp location: + +- Go to your class home directory (use your wd shortcut!) + +- Execute the following commands to copy files for this morning’s exercises to your home directory: + +``` +cp -r /scratch/micro612w18_fluxod/shared/data/day1_morn/ ./ + +cd day1_morn/ + +#or + +d1m + +ls + +``` + +- Now get three genome sequences with the following commands: + +``` +curl ftp://ftp.ncbi.nlm.nih.gov/genomes/refseq/bacteria/Acinetobacter_baumannii/latest_assembly_versions/GCF_000018445.1_ASM1844v1/GCF_000018445.1_ASM1844v1_genomic.fna.gz > Acinetobacter_baumannii.fna.gz + +curl ftp://ftp.ncbi.nlm.nih.gov/genomes/refseq/bacteria/Klebsiella_pneumoniae/latest_assembly_versions/GCF_000220485.1_ASM22048v1/GCF_000220485.1_ASM22048v1_genomic.fna.gz > Klen_pneu.fna.gz + +curl ftp://ftp.ncbi.nlm.nih.gov/genomes/refseq/bacteria/Escherichia_coli/all_assembly_versions/GCF_000194495.1_ASM19449v2/GCF_000194495.1_ASM19449v2_genomic.fna.gz > E_coli.fna.gz + +``` + +- Decompress the compressed fasta file using gzip + +``` +gzip -d Acinetobacter_baumannii.fna.gz +gzip -d Klen_pneu.fna.gz +gzip -d E_coli.fna.gz +``` + +These files are genome assemblies in fasta format. Fasta files are a common sequence data format that is composed of alternating sequence headers (sequence names and comments) and their corresponding sequences. Of great importance, the sequence header lines must start with “>”. These genome assemblies have one header line for each contig in the assembly, and our goal will be to count the number of contigs/sequences. To do this we will string together two Unix commands: “grep” and “wc”. “grep” (stands for global regular expression print), is an extremely powerful pattern matching command, which we will use to identify all the lines that start with a “>”. “wc” (stand for word count) is a command for counting words, characters and lines in a file. To count the number of contigs in one of your fasta files enter: + + +``` +grep ">" E_coli.fna | wc -l +``` + +Try this command on other assemblies to see how many contigs they have + +Your first sequence analysis program!!! +--------------------------------------- + +OK, so now that we have a useful command, wouldn’t it be great to turn it into a program that you can easily apply to a large number of genome assemblies? Of course it would! So, now we are going to take out cool contig counting command, and put it in a shell script that applies it to all files in the desired directory. + + + +- Open “fasta_counter.sh” in pico or your favourite text editor and follow instructions for making edits so it will do what we want it to do + +- Run this script in day1_morn directory and verify that you get the correct results + +``` +bash fasta_counter.sh . +``` + +Plotting genomic coverage in R +------------------------------ + +Data visualization plays an important role in organizing, analyzing and interpreting large amount of omics data. R is one of the most basic and powerful tool for manipulating and visualizing these types of data. The following task will brush up some basic R plotting commands and help you visualize some complex omics data for interpretation. + +One of the most common types of genomic analysis involves comparing the newly sequenced read data of an organism to your choice of reference organism genome. Mapping millions of reads generated in a sequencing experiment to the reference genome fasta file and interpreting various parameters can achieve this analysis. +One such parameter is validating how well your sequencing experiment performed and assessing the “uniformity” of coverage from whole-genome sequencing. Visualizing Sequencing coverage across the reference genome help us answer this question. Sequencing coverage describes the average number of reads that align to, or "cover," known reference bases. + +The input for this task is a comma-separated file, which contains average sequencing coverage information i.e average number of reads mapped to each 1000 base pairs in reference genome. You can find this input file in your day1_morn directory by the name, Ecoli_coverage_average_bed.csv + + + +Drag and drop this Ecoli_coverage_average_bed.csv to your local system using cyberduck. + +Now, Fire up R console or studio and import the file (Ecoli_coverage_average_bed.csv) using any type of data import functions in R (read.table, read.csv etc.) + +Hint: The file is comma-separated and contains header line (“bin,Average_coverage”) so use appropriate parameters while importing the file + +Once the data in file is imported into R object, you can plot the column Average_coverage as a time series plot to assess the coverage of your mapped reads across genome. + +Note: A time series plot is a graph that you can use to evaluate patterns and behavior in data over time. Here, we can employ the same plot to see the pattern i.e read depth/coverage at each 1000 bases (represented by bins columns where each bin represents Average number of reads mapped to each 1000 bases in reference genome) using the simplest R function for time series such as [plot.ts]( http://stat.ethz.ch/R-manual/R-devel/library/stats/html/plot.ts.html ) + +An example plot.ts plot for Ecoli_coverage_average_bed.csv is shown below for your reference. + +![alt tag](plot_1.png) + +For advance and more beautiful visualization, ggplot2 can be employed to display the same plot. An example ggplot2 plot for Ecoli_coverage_average_bed.csv is shown below for your reference. + +![alt tag](plot_2.png) + +
+ Solution + +``` + +x <- read.table("Ecoli_coverage_average_bed.csv", sep=",", header=TRUE) +plot.ts(x$Average_coverage, xlab="Genome Position(1000bp bins)", ylab="Average Read Depth", main="Ecoli Bed Coverage", col="blue") + +``` +
+ + +Power of Unix commands +---------------------- + +In software carpentry, you learned working with shell and automating simple tasks using basic unix commands. Lets see how some of these commands can be employed in genomics analysis while exploring various file formats that we use in day to day analysis. For this session, we will try to explore three different types of bioinformatics file formats: + +fasta: used for representing either nucleotide or peptide sequences + +gff: used for describing genes and other features of DNA, RNA and protein sequences + +fastq: used for storing biological sequence / sequencing reads (usually nucleotide sequence) and its corresponding quality scores + + +- Question: Previously, you downloaded genome assembly fasta files and ran a shell script to count contigs. Now, lets say you want to find out the combined length of genome in each of these files. This can be achieved by running a short unix command piping together two unix programs: grep and wc. The key to crafting the command is understanding the features of fasta files, + +> ***1) each sequence in fasta file is preceded by a fasta header that starts with ">",*** + +> ***2) the types of bases that a nucleotide sequence represents (A,T,G,C,N)*** + + +To determine the total length of our genome assemblies, we will use grep to match only those lines that doesn't start with ">" (remember grep -v option is used to ignore lines) and doesn't contain character "N". Then use wc command (stands for word count) to count the characters. We can use unix pipe "|" to pass the output of one command to another for further processing. Lets start by counting the number of bases in Acinetobacter_baumannii.fna file + +
+ Solution + + + + +``` + +grep -v '^>' Acinetobacter_baumannii.fna | grep -v "N" | grep -v "n" | wc -m + +#Note: + +#- The sign "^" inside the grep pattern represents any pattern that starts with ">" and -v asks grep to ignore those lines. +#- Use "|" to pass the output of one command to another. +#- -m parameter will show the character counts. Check wc help menu by typing "wc --help" on terminal to explore other parameters + +``` +
+ + + +Now run the same command on other fasta files in day1_morn directory. Try using a for loop. + + +
+ Solution + +``` + +for i in *.fna; do grep -v '^>' $i | grep -v "N" | grep -v "n" | wc -m; done + +``` +
+ + +- Exploring GFF files + +The GFF (General Feature Format) format is a tab-seperated file and consists of one line per feature, each containing 9 columns of data. + +column 1: seqname - name of the genome or contig or scaffold + +column 2: source - name of the program that generated this feature, or the data source (database or project name) + +column 3: feature - feature type name, e.g. Gene, exon, CDS, rRNA, tRNA, CRISPR, etc. + +column 4: start - Start position of the feature, with sequence numbering starting at 1. + +column 5: end - End position of the feature, with sequence numbering starting at 1. + +column 6: score - A floating point value. + +column 7: strand - defined as + (forward) or - (reverse). + +column 8: frame - One of '0', '1' or '2'. '0' indicates that the first base of the feature is the first base of a codon, '1' that the second base is the first base of a codon, and so on.. + +column 9: attribute - A semicolon-separated list of tag-value pairs, providing additional information about each feature such as gene name, product name etc. + +- Use less to explore first few lines of a gff file sample.gff + +``` + +less sample.gff + +``` +Note: lines starting with pound sign "#" represent comments and are used to document extra information about the features. + +You will notice that the GFF format follows version 3 specifications("##gff-version 3"), followed by genome name("#Genome: 1087440.3|Klebsiella pneumoniae subsp. pneumoniae KPNIH1"), date("#Date:02/09/2017") when it was generated, contig name("##sequence-region") and finally tab-seperated lines describing features. + +You can press space bar on keyboard to read more lines and "q" key to exit less command. + +- Question: Suppose, you want to find out the number of annotated features in a gff file. how will you achieve this using grep and wc? + +
+ Solution + +``` +grep -v '^#' sample.gff | wc -l +``` +
+ +- Question: How about counting the number of rRNA features in a gff(third column) file using grep, cut and wc? You can check the usage for cut by typing "cut --help" + +
+ Solution + +``` + +cut -f 3 sample.gff | grep 'rRNA' | wc -l + +#Or number of CDS or tRNA features? + +cut -f 3 sample.gff | grep 'CDS' | wc -l +cut -f 3 sample.gff | grep 'tRNA' | wc -l + +#Note: In the above command, we are trying to extract feature information from third column. + +``` +
+ +- Question: Try counting the number of features on a "+" or "-" strand (column 7). + +Some more useful one-line unix commands for GFF files: [here](https://github.com/stephenturner/oneliners#gff3-annotations) + +**Unix one-liners** + +As soon as you receive your sample data from sequencing centre, the first thing you do is check its quality using a quality control tool such as FastQC and make sure that it contain sequences from organism that you are working on (Free from any contamination). But before carrying out extensive QC, you can run a bash "one-liner" to get some basic statistics about the raw reads. These one-liners are great examples for how a set of simple (relatively) Unix commands can be piped together to do really useful things. + +Run the following command to print total number of reads in each file, total number of unique reads, percentage of unique reads, most abundant sequence(useful to find adapter sequences or contamination), its frequency, and frequency of that sequence as a proportion of the total reads, average read length. + +``` +for i in Rush_KPC_266_*.gz; do zcat $i | awk 'BEGIN{OFS="\t"};((NR-2)%4==0){read=$1;total++;count[read]++;len+=length(read)}END{for(read in count){if(!max||count[read]>max) {max=count[read];maxRead=read};if(count[read]==1){unique++}};print total,unique,unique*100/total,maxRead,count[maxRead],count[maxRead]*100/total,len/total}'; done + +#The above awk command reads every fourth record and calculates some basic fastq statistics. +``` + +Now try running the above command using fastq_screen.fastq.gz as input. + +You can find more of such super useful bash one-liners at Stephen Turner's github [page](https://github.com/stephenturner/oneliners). You can also use some pre-written unix utilities and tools such as [seqtk](https://github.com/lh3/seqtk), [bioawk](https://github.com/lh3/bioawk) and [fastx](http://hannonlab.cshl.edu/fastx_toolkit/) which comes in handy while extracting complex information from fasta/fastq/sam/bam files and are optimized to be insanely fast. + +Contamination Screening using [FastQ Screen](http://www.bioinformatics.babraham.ac.uk/projects/fastq_screen/) +-------------------------------------------- + +When running a sequencing pipeline, it is very important to make sure that your data matches appropriate quality threshold and are free from any contaminants. This step will help you make correct interpretations in downstream analysis and will also let you know if you are required to redo the experiment/library preparation or resequencing or remove contaminant sequences. + +For this purpose, we will employ fastq screen to screen one of our sample against a range of reference genome databases. + +In the previous section, did you notice the sample fastq_screen.fastq.gz had only 28 % unique reads? What sequences does it contain? + +To answer this, We will screen it against Human, Mouse and Ecoli genome and try to determine what percentage of reads are contaminant such as host DNA, i.e Human and mouse. + +We have already created the human, mouse and ecoli reference databases inside fastq_screen tool directory which you can take a look by running: + +``` + +ls /scratch/micro612w18_fluxod/shared/bin/fastq_screen_v0.5.2/data/ + +``` + +Note: You will learn creating reference databases in our afternoon session. + +> ***i. Get an interactive cluster node to start running programs. Use the shortcut that we created in .bashrc file for getting into interactive flux session.*** + +How do you know if you are in interactive session?: you should see "username@nyx" in your command prompt + +``` +iflux +``` + +Whenever you start an interactive job, the path resets to your home directory. So, navigate to day1_morn directory again. + +``` +d1m + +#or + +cd /scratch/micro612w18_fluxod/username/day1_morn/ + +``` + +> ***ii. Lets run fastq_screen on fastq_screen.fastq.gz*** + +``` + +fastq_screen --subset 1000 --force --outdir ./ --aligner bowtie2 fastq_screen.fastq.gz + +#Note: We will screen only a subset of fastq reads against reference databases. To screen all the reads, change this argument to --subset 0 but will take long time to finish. (searching sequences against human or mouse genome is a time consuming step) +#Also Dont worry about "Broken pipe" warning. + +``` + +The above run will generate two types of output file: a screen report in text format "fastq_screen_screen.txt" and a graphical output "fastq_screen_screen.png" showing percentage of reads mapped to each reference genomes. + +> ***iii. Download the fastq_screen graphical report to your home computer for inspection.*** + +Use scp command as shown below or use cyberduck. If you dont the file in cyberduck window, try refreshing it using the refresh button at the top. + +``` +scp username@flux-xfer.arc-ts.umich.edu:/scratch/micro612w18_fluxod/username/day1_morn/fastq_screen_screen.png /path-to-local-directory/ + +#You can use ~/Desktop/ as your local directory path + +``` + +Open fastq_screen_screen.png on your system. You will notice that the sample contain a significant amount of human reads; we should always remove these contaminants from our sample before proceeding to any type of microbial analysis. + +Quality Control using [FastQC](http://www.bioinformatics.babraham.ac.uk/projects/fastqc/ "FastQC homepage") +------------------------------ +[[back to top]](day1_morning.html) +[[HOME]](index.html) + +Now we will run FastQC on some sample raw data to assess its quality. FastQC is a quality control tool that reads in sequence data in a variety of formats(fastq, bam, sam) and can either provide an interactive application to review the results or create an HTML based report which can be integrated into any pipeline. It is generally the first step that you take upon receiving the sequence data from sequencing facility to get a quick sense of its quality and whether it exhibits any unusual properties (e.g. contamination or unexpected biological features) + +> ***i. In your day1_morn directory, create a new directory for saving FastQC results.*** + +``` +mkdir Rush_KPC_266_FastQC_results +mkdir Rush_KPC_266_FastQC_results/before_trimmomatic +``` + +> ***ii. Verify that FastQC is in your path by invoking it from command line.*** + +``` +fastqc -h +``` + +FastQC can be run in two modes: "command line" or as a GUI (graphical user interface). We will be using command line version of it. + +> ***iii. Run FastQC to generate quality report of sequence reads.*** + +``` +fastqc -o Rush_KPC_266_FastQC_results/before_trimmomatic/ Rush_KPC_266_1_combine.fastq.gz Rush_KPC_266_2_combine.fastq.gz --extract +``` + +This will generate two results directory, Rush_KPC_266_1_combine_fastqc and Rush_KPC_266_2_combine_fastqc in output folder provided with -o flag. + +The summary.txt file in these directories indicates if the data passed different quality control tests in text format. + +You can visualize and assess the quality of data by opening html report in a local browser. + +> ***iv. Exit your cluster node so you don’t waste cluster resources and $$$!*** + +> ***v. Download the FastQC html report to your home computer to examine using scp or cyberduck*** + +``` +scp username@flux-xfer.arc-ts.umich.edu:/scratch/micro612w18_fluxod/username/day1_morn/Rush_KPC_266_FastQC_results/before_trimmomatic/*.html /path-to-local-directory/ +``` + +The analysis in FastQC is broken down into a series of analysis modules. The left hand side of the main interactive display or the top of the HTML report show a summary of the modules which were run, and a quick evaluation of whether the results of the module seem entirely normal (green tick), slightly abnormal (orange triangle) or very unusual (red cross). + +![alt tag](1.png) + +Lets first look at the quality drop(per base sequence quality graph) at the end of "Per Base Sequence Quality" graph. This degredation of quality towards the end of reads is commonly observed in illumina samples. The reason for this drop is that as the number of sequencing cycles performed increases, the average quality of the base calls, as reported by the Phred Scores produced by the sequencer falls. + +Next, lets check the overrepresented sequences graph and the kind of adapters that were used for sequencing these samples (Truseq or Nextera) which comes in handy while indicating the adapter database path during downstream filtering step (Trimmomatic). + +![alt tag](2.png) + +- Check out [this](https://sequencing.qcfail.com/articles/loss-of-base-call-accuracy-with-increasing-sequencing-cycles/) for more detailed explaination as to why quality drops with increasing sequencing cycles. + +- [A video FastQC walkthrough created by FastQC developers](https://www.youtube.com/watch?v=bz93ReOv87Y "FastQC video") + +Quality Trimming using [Trimmomatic](http://www.usadellab.org/cms/?page=trimmomatic "Trimmomatic Homepage") +------------------------------------ +[[back to top]](day1_morning.html) +[[HOME]](index.html) + +Filtering out problematic sequences within a dataset is inherently a trade off between sensitivity (ensuring all contaminant sequences are removed) and specificity (leaving all non-contaminant sequence data intact). Adapter and other technical contaminants can potentially occur in any location within the reads.(start, end, read-through (between the reads), partial adapter sequences) + +Trimmomatic is a tool that tries to search these potential contaminant/adapter sequence within the read at all the possible locations. It takes advantage of the added evidence available in paired-end dataset. In paired-end data, read-through/adapters can occur on both the forward and reverse reads of a particular fragment in the same position. Since the fragment was entirely sequenced from both ends, the non-adapter portion of the forward and reverse reads will be reverse-complements of each other. This strategy of searching for contaminant in both the reads is called 'palindrome' mode. + +For more information on how Trimmomatic tries to achieve this, Please refer [this](http://www.usadellab.org/cms/uploads/supplementary/Trimmomatic/TrimmomaticManual_V0.32.pdf) manual. + +Now we will run Trimmomatic on these raw data to remove low quality reads as well as adapters. + +> ***i. If the interactive session timed out, get an interactive cluster node again to start running programs and navigate to day1_morn directory.*** + +How to know if you are in interactive session: you should see "username@nyx" in your command prompt + +``` +iflux + +cd /scratch/micro612w18_fluxod/username/day1_morn/ + +#or + +d1m +``` + +> ***ii. Create these output directories in your day1_morn folder to save trimmomatic results*** + +``` +mkdir Rush_KPC_266_trimmomatic_results +``` + +> ***iii. Try to invoke trimmomatic from command line.*** + +``` +java -jar /scratch/micro612w18_fluxod/shared/bin/Trimmomatic/trimmomatic-0.33.jar –h +``` + +> ***iv. Run the below trimmomatic commands on raw reads.*** + +``` +java -jar /scratch/micro612w18_fluxod/shared/bin/Trimmomatic/trimmomatic-0.33.jar PE Rush_KPC_266_1_combine.fastq.gz Rush_KPC_266_2_combine.fastq.gz Rush_KPC_266_trimmomatic_results/forward_paired.fq.gz Rush_KPC_266_trimmomatic_results/forward_unpaired.fq.gz Rush_KPC_266_trimmomatic_results/reverse_paired.fq.gz Rush_KPC_266_trimmomatic_results/reverse_unpaired.fq.gz ILLUMINACLIP:/scratch/micro612w18_fluxod/shared/bin/Trimmomatic/adapters/TruSeq3-PE.fa:2:30:10:8:true SLIDINGWINDOW:4:15 MINLEN:40 HEADCROP:0 +``` + + +![alt tag](trimm_parameters.png) + +First, Trimmomatic searches for any matches between the reads and adapter sequences. Adapter sequences are stored in this directory of Trimmomatic tool: /scratch/micro612w18_fluxod/shared/bin/Trimmomatic/adapters/. Trimmomatic comes with a list of standard adapter fasta sequences such TruSeq, Nextera etc. You should use appropriate adapter fasta sequence file based on the illumina kit that was used for sequencing. You can get this information from your sequencing centre or can find it in FastQC html report (Section: Overrepresented sequences). + +Short sections (2 bp as determined by seed misMatch parameter) of each adapter sequences (contained in TruSeq3-PE.fa) are tested in each possible position within the reads. If it finds a perfect match, It starts searching the entire adapter sequence and scores the alignment. The advantage here is that the full alignment is calculated only when there is a perfect seed match which results in considerable efficiency gains. So, When it finds a match, it moves forward with full alignment and when the match reaches 10 bp determined by simpleClipThreshold, it finally trims off the adapter from reads. + +Quoting Trimmomatic: + +"'Palindrome' trimming is specifically designed for the case of 'reading through' a short fragment into the adapter sequence on the other end. In this approach, the appropriate adapter sequences are 'in silico ligated' onto the start of the reads, and the combined adapter+read sequences, forward and reverse are aligned. If they align in a manner which indicates 'read- through' i.e atleast 30 bp match, the forward read is clipped and the reverse read dropped (since it contains no new data)." + +> ***v. Now create new directories in day1_morn folder and Run FastQC on these trimmomatic results.*** + +``` +mkdir Rush_KPC_266_FastQC_results/after_trimmomatic + +fastqc -o Rush_KPC_266_FastQC_results/after_trimmomatic/ Rush_KPC_266_trimmomatic_results/forward_paired.fq.gz Rush_KPC_266_trimmomatic_results/reverse_paired.fq.gz --extract +``` + +Get these html reports to your local system. + +``` +scp username@flux-xfer.arc-ts.umich.edu:/scratch/micro612w18_fluxod/username/day1_morn/Rush_KPC_266_FastQC_results/after_trimmomatic/*.html /path-to-local-directory/ +``` + +![alt tag](3.png) + +After running Trimmomatic, you should notice that the sequence quality improved (Per base sequence quality) and now it doesn't contain any contaminants/adapters (Overrepresented sequences). + +Next, take a look at the per base sequence content graph, and notice that the head bases(~9 bp) are slightly imbalanced. In a perfect scenario, each nucleotide content should run parallel to each other, and should be reflective of the overall A/C/T/G content of your input sequence. + +Quoting FastQC: + "It's worth noting that some types of library will always produce biased sequence composition, normally at the start of the read. Libraries produced by priming using random hexamers (including nearly all RNA-Seq libraries) and those which were fragmented using transposases inherit an intrinsic bias in the positions at which reads start. This bias does not concern an absolute sequence, but instead provides enrichment of a number of different K-mers at the 5' end of the reads. Whilst this is a true technical bias, it isn't something which can be corrected by trimming and in most cases doesn't seem to adversely affect the downstream analysis. It will however produce a warning or error in this module." + +This doesn't look very bad but you can remove the red cross sign by trimming these imbalanced head bases using HEADCROP:9 flag in the above command. + +> ***vi. Lets Run trimmomatic again with headcrop 9 and save it in a different directory called Rush_KPC_266_trimmomatic_results_with_headcrop/*** + +``` +mkdir Rush_KPC_266_trimmomatic_results_with_headcrop/ + +time java -jar /scratch/micro612w18_fluxod/shared/bin/Trimmomatic/trimmomatic-0.33.jar PE Rush_KPC_266_1_combine.fastq.gz Rush_KPC_266_2_combine.fastq.gz Rush_KPC_266_trimmomatic_results_with_headcrop/forward_paired.fq.gz Rush_KPC_266_trimmomatic_results_with_headcrop/forward_unpaired.fq.gz Rush_KPC_266_trimmomatic_results_with_headcrop/reverse_paired.fq.gz Rush_KPC_266_trimmomatic_results_with_headcrop/reverse_unpaired.fq.gz ILLUMINACLIP:/scratch/micro612w18_fluxod/shared/bin/Trimmomatic/adapters/TruSeq3-PE.fa:2:30:10:8:true SLIDINGWINDOW:4:20 MINLEN:40 HEADCROP:9 +``` + +Unix gem: time in above command shows how long a command takes to run? + +> ***vii. Run FastQC 'one last time' on updated trimmomatic results with headcrop and check report on your local computer*** + +``` +mkdir Rush_KPC_266_FastQC_results/after_trimmomatic_headcrop/ +fastqc -o Rush_KPC_266_FastQC_results/after_trimmomatic_headcrop/ --extract -f fastq Rush_KPC_266_trimmomatic_results_with_headcrop/forward_paired.fq.gz Rush_KPC_266_trimmomatic_results_with_headcrop/reverse_paired.fq.gz +``` +Download the reports again and see the difference. +``` +scp username@flux-xfer.arc-ts.umich.edu:/scratch/micro612w18_fluxod/username/day1_morn/Rush_KPC_266_FastQC_results/after_trimmomatic_headcrop/*.html /path-to-local-directory/ +``` + +The red cross sign disappeared! + +Lets have a look at one of the Bad Illumina data example [here](http://www.bioinformatics.babraham.ac.uk/projects/fastqc/bad_sequence_fastqc.html) + +[[back to top]](day1_morning.html) +[[HOME]](index.html) diff --git a/docs/build/html/_sources/day2_afternoon.txt b/docs/build/html/_sources/day2_afternoon.txt new file mode 100644 index 0000000..518e379 --- /dev/null +++ b/docs/build/html/_sources/day2_afternoon.txt @@ -0,0 +1,475 @@ +Day 2 Afternoon +=============== +[[HOME]](index.html) + +High-throughput BLAST and pan-genome analysis +--------------------------------------------- + +This morning we learned how to perform basic genome annotation and comparison using Prokka and ACT. Now we will up the ante and do some more sophisticated comparative genomics analyses! +First, we will create custom BLAST databases to identify specific antibiotic resistance genes of interest in a set of genomes. +Second, we will use the large-scale BLAST-based tool LS-BSR to identify the complete antibiotic resistome in our genomes. +Third, we will move beyond antibiotic resistance, and look at the complete set of protein coding genes in our input genomes. +Finally, we will go back to ACT to understand the sorts of genomic rearrangements underlying observed variation in gene content. + +For these exercises we will be looking at four closely related Acinetobacter baumannii strains. However, despite being closely related, these genomes have major differences in gene content, as A. baumannii has a notoriously flexible genome! In fact, in large part due to its genomic flexibility, A. baumannii has transitioned from a harmless environmental contaminant to a pan-resistant super-bug in a matter of a few decades. If you are interested in learning more, check out this nature [review](http://www.nature.com/nrmicro/journal/v5/n12/abs/nrmicro1789.html) or [this](http://www.pnas.org/content/108/33/13758.abstract) paper, I published a few years back analyzing the very same genomes you are working with. + +Execute the following command to copy files for this afternoon’s exercises to your scratch directory: + +``` + +cd /scratch/micro612w18_fluxod/username + +or + +wd + +cp -r /scratch/micro612w18_fluxod/shared/data/day2_after/ ./ + +``` + +Determine which genomes contain beta-lactamase genes +---------------------------------------------------- +[[back to top]](day2_afternoon.html) +[[HOME]](index.html) + +Before comparing full genomic content, lets start by looking for the presence of particular genes of interest. A. baumannii harbors an arsenal of resistance genes, and it would be interesting to know how particular resistance families vary among our 4 genomes. To accomplish this we will use the antibiotic resistance database ([ARDB](http://ardb.cbcb.umd.edu/)) and particularly beta-lactamase genes extracted from ARDB. These extracted genes can be found in file ardb_beta_lactam_genes.pfasta, which we will use to generate a Blast database. + +> ***i. Run makeblastdb on the file of beta-lactamases to create a BLAST database.*** + +makeblastdb takes as input: + +1) an input fasta file of protein or nucleotide sequences (ardb_beta_lactam_genes.pfasta) and + +2) a flag indicating whether to construct a protein or nucleotide database (in this case protein/ -dbtype prot). + +``` +#change directory to day2_after +d2a + + +makeblastdb -in ardb_beta_lactam_genes.pfasta -dbtype prot + +``` + +> ***ii. BLAST A. baumannii protein sequences against our custom beta-lactamase database.*** + +Run BLAST! + +The input parameters are: + +1) query sequences (-query Abau_all.pfasta), + +2) the database to search against (-db ardb_beta_lactam_genes.pfasta), + +3) the name of a file to store your results (-out bl_blastp_results), + +4) output format (-outfmt 6), + +5) e-value cutoff (-evalue 1e-20), + +6) number of database sequences to return (-max_target_seqs 1) + + +``` +blastp -query Abau_all.pfasta -db ardb_beta_lactam_genes.pfasta -out bl_blastp_results -outfmt 6 -evalue 1e-20 -max_target_seqs 1 +``` + +Use less to look at bl_blastp_results. + +``` +less bl_blastp_results +``` + +- Question: Experiment with the –outfmt parameter, which controls different output formats that BLAST can produce. + +- Question: Determine which Enterococcus genomes contain vancomycin resistance genes. To do this you will need to: i) create a protein BLAST database for ardb_van.pfasta, ii) concetenate the genomes sequences in the .fasta files and iii) use blastx to BLAST nucleotide genomes against a protein database + +Identification of antibiotic resistance genes with [ARIBA](https://github.com/sanger-pathogens/ariba) directly from paired end reads +---------------------------------------------------------- +[[back to top]](day2_afternoon.html) +[[HOME]](index.html) + +ARIBA, Antimicrobial Resistance Identification By Assembly is a tool that identifies antibiotic resistance genes by running local assemblies. The input is a FASTA file of reference sequences (can be a mix of genes and noncoding sequences) and paired sequencing reads. ARIBA reports which of the reference sequences were found, plus detailed information on the quality of the assemblies and any variants between the sequencing reads and the reference sequences. + +ARIBA is compatible with various databases and also contains an utility to download different databases such as: argannot, card, megares, plasmidfinder, resfinder, srst2_argannot, vfdb_core. Today, we will be working with the [card](https://card.mcmaster.ca/) database, which has been downloaded and placed in /scratch/micro612w18_fluxod/shared/out.card.prepareref/ directory. + + + +> ***i. Run ARIBA on input paired-end fastq reads for resistance gene identification.*** + +The fastq reads are placed in Abau_genomes_fastq directory. Enter interactive flux session, change directory to day2_after workshop directory and run the below four commands to start ARIBA jobs in background. + + + +``` +iflux + +cd /scratch/micro612w18_fluxod/username/day2_after + +or + +d2a + +#Load dependency + +module load cd-hit + +#ARIBA commands + +/nfs/esnitkin/bin_group/anaconda3/bin/ariba run --force /scratch/micro612w18_fluxod/shared/out.card.prepareref/ Abau_genomes_fastq/AbauA_genome.1.fastq.gz Abau_genomes_fastq/AbauA_genome.2.fastq.gz AbauA_genome & + +/nfs/esnitkin/bin_group/anaconda3/bin/ariba run --force /scratch/micro612w18_fluxod/shared/out.card.prepareref/ Abau_genomes_fastq/AbauB_genome.1.fastq.gz Abau_genomes_fastq/AbauB_genome.2.fastq.gz AbauB_genome & + +/nfs/esnitkin/bin_group/anaconda3/bin/ariba run --force /scratch/micro612w18_fluxod/shared/out.card.prepareref/ Abau_genomes_fastq/AbauC_genome.1.fastq.gz Abau_genomes_fastq/AbauC_genome.2.fastq.gz AbauC_genome & + +/nfs/esnitkin/bin_group/anaconda3/bin/ariba run --force /scratch/micro612w18_fluxod/shared/out.card.prepareref/ Abau_genomes_fastq/ACICU_genome.1.fastq.gz Abau_genomes_fastq/ACICU_genome.2.fastq.gz ACICU_genome & + +``` + +The "&" in the above commands(at the end) is a little unix trick to run commands in background. You can run multiple commands in background and make full use of parallel processing. You can check the status of these background jobs by typing: + +``` +jobs +``` + +> ***ii. Run ARIBA summary function to generate a summary report.*** + +ARIBA has a summary function that summarises the results from one or more sample runs of ARIBA and generates an output report with various level of information determined by -preset parameter. The parameter "-preset minimal" will generate a minimal report showing only the presence/absence of resistance genes whereas "-preset all" will output all the extra information related to each database hit such as reads and reference sequence coverage, variants and their associated annotations(if the variant confers resistance to an Antibiotic) etc. + +``` + +/nfs/esnitkin/bin_group/anaconda3/bin/ariba summary --preset minimal Abau_genomes_ariba_minimal_results *_genome/report.tsv + +/nfs/esnitkin/bin_group/anaconda3/bin/ariba summary --preset all Abau_genomes_ariba_all_results *_genome/report.tsv + +``` + +ARIBA summary generates three output: + +1. Abau_genomes_ariba*.csv file that can be viewed in your favourite spreadsheet program. +2. Abau_genomes_ariba*.phandango.{csv,tre} that allow you to view the results in [Phandango](http://jameshadfield.github.io/phandango/#/). They can be drag-and-dropped straight into Phandango. + +Lets copy this phandango files Abau_genomes_ariba_minimal_results.phandango.csv and Abau_genomes_ariba_minimal_results.phandango.tre to the local system using cyberduck or scp + +``` +scp username\@flux-xfer.arc-ts.umich.edu:/scratch/micro612w18_fluxod/username/day2_after/*minimal_results.phandango* ~/Desktop/ +``` + +Drag and drop these two files on [Phandango](http://jameshadfield.github.io/phandango/#/) website. What types of resistance genes do you see in these Acinetobacter genomes? This [review](http://aac.asm.org/content/55/3/947.full) may help interpret. + +> ***iii. Explore full ARIBA matrix in R*** + +- Now, Fire up R console or studio and read ariba full report "Abau_genomes_ariba_all_results.csv" + +``` +ariba_full = read.csv(file = 'Abau_genomes_ariba_all_results.csv', row.names = 1) +``` + +- Subset to get description for each gene + +``` +ariba_full_asm = ariba_full[, grep('assembled',colnames(ariba_full))] +``` + +- Make binary for plotting purposes + +``` +ariba_full_asm[,] = as.numeric(ariba_full_asm != 'no') +``` + +- Make a heatmap! + +``` +heatmap(as.matrix(ariba_full_asm), scale = "none", col= c('black', 'red'), margins = c(10,5), cexRow = 0.75) +``` + +Perform pan-genome analysis with [Roary](https://sanger-pathogens.github.io/Roary/) +---------------------------------------- + +Roary is a pan genome pipeline, which takes annotated assemblies in GFF3 format and calculates the pan genome. The pan-genome is just a fancy term for the full complement of genes in a set of genomes. + +The way Roary does this is by: +1) Roary gets all the coding sequences from GFF files, convert them into protein, and create pre-clusters of all the genes, +2) Then, using BLASTP and MCL, Roary will create gene clusters, and check for paralogs. and +3) Finally, Roary will take every isolate and order them by presence/absence of genes. + +> ***i. Generate pan-genome matrix using Roary and GFF files*** + +Make sure you are on an interactive node, as this will be even more computationally intensive! + +``` +iflux +``` + +Change your directory to day2_after + +``` + +> Make sure to change username with your uniqname + +cd /scratch/micro612w18_fluxod/username/day2_after/ + +or + +d2a + +``` + +Load all the required dependencies and run roary on GFF files placed in Abau_genomes_gff folder. + +``` +module load samtools +module load bedtools2 +module load cd-hit +module load ncbi-blast +module load mcl +module load parallel +module load mafft +module load fasttree +module load perl-modules +module load R +module load roary + +#Run roary +roary -p 4 -f Abau_genomes_roary_output -r -n -v Abau_genomes_gff/*.gff +``` + +The above roary command will run pan-genome pipeline on gff files placed in Abau_genomes_gff(-v) using 4 threads(-p), save the results in an output directory Abau_genomes_roary_output(-f), generate R plots using .Rtab output files and align core genes(-n) + +Change directory to Abau_genomes_roary_output to explore the results. + +``` +cd Abau_genomes_roary_output + +ls +``` + +Output files: + +1. summary_statistics.txt: This file is an overview of your pan genome analysis showing the number of core genes(present in all isolates) and accessory genes(genes absent from one or more isolates or unique to a given isolate). + +2. gene_presence_absence.csv: This file contain detailed information about each gene including their annotations which can be opened in any spreadsheet software to manually explore the results. It contains plethora of information such as gene name and their functional annotation, whether a gene is present in a genome or not, minimum/maximum/Average sequence length etc. + +3. gene_presence_absence.Rtab: This file is similar to the gene_presence_absence.csv file, however it just contains a simple tab delimited binary matrix with the presence and absence of each gene in each sample. It can be easily loaded into R using the read.table function for further analysis and plotting. The first row is the header containing the name of each sample, and the first column contains the gene name. A 1 indicates the gene is present in the sample, a 0 indicates it is absent. + +4. core_gene_alignment.aln: a multi-FASTA alignment of all of the core genes that can be used to generate a phylogenetic tree. + + + +> ***ii. Explore pan-genome matrix gene_presence_absence.csv and gene_presence_absence.Rtab using R*** + + + +**Modify gene_presence_absence.Rtab file to include annotations** + +- Get column names from gene_presence_absence.csv file + +``` +head -n1 gene_presence_absence.csv | tr ',' '\n' | cat --number +``` +- Pull columns of interest + +``` +cut -d "," -f 3 gene_presence_absence.csv | tr '"' '_' > gene_presence_absence_annot.csv +``` + +- Paste it into pan-genome matrix + +``` +paste -d "" gene_presence_absence_annot.csv gene_presence_absence.Rtab > gene_presence_absence_wannot.Rtab +``` + +- Check gene_presence_absence_wannot.Rtab file + +``` +less gene_presence_absence_wannot.Rtab +``` + +**Read matrix into R, generate exploratory plots and query pan-genome** + +Use scp or cyberduck to get gene_presence_absence_wannot.Rtab onto your laptop. + +> ***i. Prepare and clean data*** + +- Fire up RStudio and read gene_presence_absence_wannot.Rtab into matrix. + +``` +pg_matrix = read.table('gene_presence_absence_wannot.Rtab', sep = "\t", quote = "", row.names = 1, skip = 1) +``` + +- Add column names back + +``` +colnames(pg_matrix) = c('ACICU', 'AbauA', 'AbauB', 'AbauC') +``` + +- Use head, str, dim, etc. to explore the matrix. + +> ***ii. Generate exploratory heatmaps.*** + +- Make a heatmap for the full matrix + +``` +heatmap(as.matrix(pg_matrix), , scale = "none", distfun = function(x){dist(x, method = "manhattan")}, margin = c(10,10), cexCol = 0.85, cexRow = 0.5, col= c('black', 'red')) +``` + +- Make a heatmap for variable genes (present in at least one, but not all of the genomes) + +``` + +pg_matrix_subset = pg_matrix[rowSums(pg_matrix > 0) > 0 & rowSums(pg_matrix > 0) < 4 ,] +heatmap(as.matrix(pg_matrix_subset), , scale = "none", distfun = function(x){dist(x, method = "manhattan")}, margin = c(10,10), cexCol = 0.85, cexRow = 0.5, col= c('black', 'red')) + +``` + +> ***iii. Query pan-genome*** + +- Which genomes are most closely related based upon shared gene content? + +We will use the outer function to determine the number of genes shared by each pair of genomes. + + + +Look at the help page for outer to gain additional insight into how this is working. + +``` +help(outer) +``` + +``` +outer(1:4,1:4, FUN = Vectorize(function(x,y){sum(pg_matrix_subset[,x] > 0 & pg_matrix_subset[,y] > 0)})) +``` + +- What is the size of the core genome? + +Lets first get an overview of how many genes are present in different numbers of genomes (0, 1, 2, 3 or 4) by plotting a histogram. Here, we combine hist with rowSums to accomplish this. + +``` +hist(rowSums(pg_matrix > 0), col="red") +``` + +Next, lets figure out how big the core genome is (e.g. how many genes are common to all of our genomes)? + +``` +sum(rowSums(pg_matrix > 0) == 4) +``` + +- What is the size of the accessory genome? + +Lets use a similar approach to determine the size of the accessory genome (e.g. those genes present in only a subset of our genomes). + +``` +sum(rowSums(pg_matrix > 0) < 4 & rowSums(pg_matrix > 0) > 0) +``` + +- What types of genes are unique to a given genome? + +So far we have quantified the core and accessory genome, now lets see if we can get an idea of what types of genes are core vs. accessory. Lets start by looking at those genes present in only a single genome. + +``` +row.names(pg_matrix[rowSums(pg_matrix > 0) == 1,]) +``` + +What do you notice about these genes? + +- What is the number of hypothetical genes in core vs. accessory genome? + +Looking at unique genes we see that many are annotated as “hypothetical”, indicating that the sequence looks like a gene, but has no detectable homology with a functionally characterized gene. + +Determine the fraction of “hypothetical” genes in unique vs. core. + +``` +sum(grepl("hypothetical" , row.names(pg_matrix[rowSums(pg_matrix > 0) == 1,]))) / sum(rowSums(pg_matrix > 0) == 1) +sum(grepl("hypothetical" , row.names(pg_matrix[rowSums(pg_matrix > 0) == 4,]))) / sum(rowSums(pg_matrix > 0) == 4) +``` + +Why does this make sense? + +Perform genome comparisons with [ACT](http://www.sanger.ac.uk/science/tools/artemis-comparison-tool-act) +------------------------------------- +[[back to top]](day2_afternoon.html) +[[HOME]](index.html) + +In the previous exercises we were focusing on gene content, but losing the context of the structural variation underlying gene content variation (e.g. large insertions and deletions). +Here we will use ACT to compare two of our genomes (note that you can use ACT to compare more than two genomes if desired). + +> ***i. Create ACT alignment file with BLAST*** + +As we saw this morning, to compare genomes in ACT we need to use BLAST to create the alignments. We will do this on flux. + +``` + +cd scratch/micro612w18_fluxod/username/day2_after +blastall -p blastn -i ./Abau_genomes/AbauA_genome.fasta -d ./Abau_BLAST_DB/ACICU_genome.fasta -m 8 -e 1e-20 -o AbauA_vs_ACICU.blast + +``` + +> ***ii. Read in genomes, alignments and annotation files*** + +Use scp or cyberduck to transfer Abau_ACT_files folder onto your laptop + + +1. Abau_genomes/AbauA_genome.fasta +2. Abau_genomes/ACICU_genome.fasta +3. AbauA_vs_ACICU.blast +4. Abau_ACT_files/AbauA_genome_gene.gff +5. Abau_ACT_files/ACICU_genome_gene.gff + + +> ***iii. Explore genome comparison and features of ACT*** + +Read in genomes and alignment into ACT + +``` + +Go to File -> open +Sequence file 1 = ACICU_genome.fasta +Comparison file 1 = AbauA_vs_ACICU.blast +Sequence file 2 = AbauA_genome.fasta + +``` + +Before we use annotation present in genbank files. Here we will use ACT specific annotation files so we get some prettier display (resistance genes = red, transposable elements = bright green) + +``` + +Go to File -> ACICU_genome.fasta -> Read an entry file = ACICU_genome_gene.gff + +Go to File -> AbauA_genome.fasta -> Read an entry file = AbauA_genome_gene.gff + +``` + +Play around in ACT to gain some insight into the sorts of genes present in large insertion/deletion regions. +See if you can find: + +1) differences in phage content, +2) membrane biosynthetic gene cluster variation and +3) antibiotic resistance island variation. + diff --git a/docs/build/html/_sources/day2_morning.txt b/docs/build/html/_sources/day2_morning.txt new file mode 100644 index 0000000..b04b558 --- /dev/null +++ b/docs/build/html/_sources/day2_morning.txt @@ -0,0 +1,442 @@ +Day 2 Morning +============= +[[HOME]](index.html) + +On day 1 we worked through a pipeline to map short-read data to a pre-existing assembly and identify single-nucleotide variants (SNVs) and small insertions/deletions. However, what this sort of analysis misses is the existence of sequence that is not present in your reference. Today we will tackle this issue by assembling our short reads into larger sequences, which we will then analyze to characterize the functions unique to our sequenced genome. + +Execute the following command to copy files for this morning’s exercises to your workshop home directory: + +``` +> Note: Make sure you change 'username' in the commands below to your 'uniqname'. + +wd + +#or + +cd /scratch/micro612w18_fluxod/username + +> Note: Check if you are in your home directory(/scratch/micro612w18_fluxod/username) by executing 'pwd' in terminal. 'pwd' stands for present working directory and it will display the directory you are in. + +pwd + +> Note: Copy files for this morning's exercise in your home directory. + +cp -r /scratch/micro612w18_fluxod/shared/data/day2_morn ./ +``` + +Genome Assembly using [Spades](http://bioinf.spbau.ru/spades) Pipeline +------------------------------ +[[back to top]](day2_morning.html) +[[HOME]](index.html) + +![alt tag](intro.png) + +There are a wide range of tools available for assembly of microbial genomes. These assemblers fall in to two general algorithmic categories, which you can learn more about [here](?). In the end, most assemblers will perform well on microbial genomes, unless there is unusually high GC-content or an over-abundance of repetitive sequences, both of which make accurate assembly difficult. + +Here we will use the Spades assembler with default parameters. Because genome assembly is a computationally intensive process, we will submit our assembly jobs to the cluster, and move ahead with some pre-assembled genomes, while your assemblies are running. + +> ***i. Create directory to hold your assembly output.*** + +Create a new directory for the spades output in your day2_morn folder + +``` +> Note: Make sure you change 'username' in the below command with your 'uniqname'. + +d2m + +#or + +cd /scratch/micro612w18_fluxod/username/day2_morn + +> We will create a new directory in day2_morn to save genome assembly results: + +mkdir Rush_KPC_266_assembly_result + +``` + +Now, we will use a genome assembly tool called Spades for assembling the reads. + +> ***ii. Test out Spades to make sure it's in your path*** + +To make sure that your paths are set up correctly, try running Spades with the –h (help) flag, which should produce usage instruction. + +``` +> check if spades is working. + +spades.py -h + +``` + +> ***iii. Submit a cluster job to assemble*** + +Since it takes a huge amount of memory and time to assemble genomes using spades, we will run a pbs script on the cluster for this step. + +Now, open the spades.pbs file residing in the day2_morning folder with nano and add the following spades command to the bottom of the file. Replace the EMAIL_ADDRESS in spades.pbs file with your actual email-address. This will make sure that whenever the job starts, aborts or ends, you will get an email notification. + +``` +> Open the spades.pbs file using nano: + +nano spades.pbs + +> Now replace the EMAIL_ADDRESS in spades.pbs file with your actual email-address. This will make sure that whenever the job starts, aborts or ends, you will get an email notification. + +> Copy and paste the below command to the bottom of spades.pbs file. + +spades.py --pe1-1 forward_paired.fq.gz --pe1-2 reverse_paired.fq.gz --pe1-s forward_unpaired.fq.gz --pe1-s reverse_unpaired.fq.gz -o Rush_KPC_266_assembly_result/ --careful + +``` + +> ***iv. Submit your job to the cluster with qsub*** + +``` +qsub -V spades.pbs +``` + +> ***v. Verify that your job is in the queue with the qstat command*** + +``` +qstat –u username +``` + +Assembly evaluation using [QUAST](http://bioinf.spbau.ru/quast) +--------------------------------- +[[back to top]](day2_morning.html) +[[HOME]](index.html) + +The output of an assembler is a set of contigs (contiguous sequences), that are composed of the short reads that we fed in. Once we have an assembly we want to evaluate how good it is. This is somewhat qualitative, but there are some standard metrics that people use to quantify the quality of their assembly. Useful metrics include: i) number of contigs (the fewer the better), ii) N50 (the minimum contig size that at least 50% of your assembly belongs, the bigger the better). In general you want your assembly to be less than 200 contigs and have an N50 greater than 50 Kb, although these numbers are highly dependent on the properties of the assembled genome. + +To evaluate some example assemblies we will use the tool quast. Quast produces a series of metrics describing the quality of your genome assemblies. + +> ***i. Run quast on a set of previously generated assemblies*** + +Now to check the example assemblies residing in your day2_morn folder, run the below quast command. Make sure you are in day2_morn folder in your home directory using 'pwd' + +``` +quast.py -o quast sample_264_contigs.fasta sample_266_contigs.fasta +``` + +The command above will generate a report file in /scratch/micro612w18_fluxod/username/day2_morn/quast + +> ***ii. Explore quast output*** + +QUAST creates output in different formats such as html, pdf and text. Now lets check the report.txt file residing in quast folder for assembly statistics. Open report.txt using nano. + +``` +less quast/report.txt +``` + +Check the difference between the different assembly statistics. Also check the different types of report it generated. + +Generating multiple sample reports using [multiqc](http://multiqc.info/) +-------------------------------------------------- + +![alt tag](multiqc.jpeg) + +Let's imagine a real-life scenario where you are working on a project which requires you to analyze and process hundreds of samples. Having a few samples with extremely bad quality is very commonplace. Including these bad samples into your analysis without adjusting their quality threshold can have a profound effect on downstream analysis and interpretations. + +- Question: How will you find those bad apples? + +Yesterday, we learned how to assess and control the quality of samples as well as screen for contaminants. But the problem with such tools or any other tools is, they work on per-sample basis and produce only single report/logs per sample. Therefore, it becomes cumbersome to dig through each sample's reports and make appropriate quality control calls. + +Thankfully, there is a tool called multiqc which parses the results directory containing output from various tools, reads the log report created by those tools (ex: FastQC, FastqScreen, Quast), aggregates them and creates a single report summarizing all of these results so that you have everything in one place. This helps greatly in identifying the outliers and removing or reanalysizing it individually. + +Lets take a look at one such mutiqc report that was generated using FastQC results on *C. difficile* samples. + +Download the html report Cdiff_multiqc_report.html from your day2_morn folder. + +``` +#Note: Make sure you change 'username' in the below command to your 'uniqname'. + +scp username@flux-xfer.arc-ts.umich.edu:/scratch/micro612w18_fluxod/username/day2_morn/Cdiff_multiqc_report.html /path-to-local-directory/ + +``` + +- Question: Open this report in a browser and try to find the outlier sample/s + +- Question: What is the most important parameter to look for while identifying contamination or bad samples? + +- Question: What is the overall quality of data? + +Lets run multiqc on one such directory where we ran and stored FastQC, FastQ Screen and Quast reports. + +if you are not in day2_morn folder, navigate to it and change directory to multiqc_analysis + +``` +d2m + +#or + +cd /scratch/micro612w18_fluxod/username/day2_morn/ + +cd multiqc_analysis + +#Load python and Try invoking multiqc + +module load python-anaconda2/latest + +multiqc -h + +#Run multiqc on sample reports + +multiqc ./ --force --filename workshop_multiqc + +#Check if workshop_multiqc.html report was generated + +ls + +#transfer this report to your local system and open it in a browser for visual inspection + +scp username@flux-xfer.arc-ts.umich.edu:/scratch/micro612w18_fluxod/username/day2_morn/workshop_multiqc.html /path-to-local-directory/ + +``` + +The report contains the Assembly, Fastq Screen and FastQC report for a mixture of 51 organisms' sequence data. Sample names for Assembly statistics ends with "l500_contigs". + +- Question: Play around with the General statistics table by sorting different columns. (click on a column header). To view just the assembly statistics, click on the N50 column header. Which sample has the worst N50 value? What do you think must be the reason? + +- Question: Which two sample's genome length i.e column Length (Mbp) stand out from all the other genome lengths? What is their GC %? What about their FastQ Screen result? + +- Question: What about Number of Contigs section? Are you getting reasonable number of contigs or is there any bad assembly? + +- Question: Any sample's quality stand out from the rest of the bunch? + + +Compare assembly to reference genome and post-assembly genome improvement +------------------------------------------------------------------------- +[[back to top]](day2_morning.html) +[[HOME]](index.html) + +Now that we feel confident in our assembly, let's compare it to our reference to see if we can identify any large insertions/deletions using a graphical user interface called Artemis Comparison Tool (ACT) for visualization. + + + +In order to simplify the comparison between assembly and reference, we first need to orient the order of the contigs to reference. + +> ***i. Run abacas to orient contigs to the reference*** + +To orient our contigs relative to the reference we will use a tool called abacas. [ABACAS](http://www.sanger.ac.uk/science/tools/pagit) aligns contigs to a reference genome and then stitches them together to form a “pseudo-chromosome”. + +Go back to flux and into the directory where the assembly is located. + +``` +d2m + +#or + +cd /scratch/micro612w18_fluxod/username/day2_morn/ +``` + +Now, we will run abacas using these input parameters: + +1) your reference sequence (-r KPNIH.fasta), + +2) your contig file (-q sample_266_contigs.fasta), + +3) the program to use to align contigs to reference (-p nucmer), + +4) append unmapped contigs to end of file (-b), + +5) use default nucmer parameters (-d), + +6) append contigs into pseudo-chromosome (-a), + +7) the prefix for your output files (–o sample_266_contigs_ordered) + +Check if abacas can be properly invoked: + +``` +abacas.1.3.1.pl -h +``` + +Run abacas on assembly: + +``` +abacas.1.3.1.pl -r KPNIH1.fasta -q sample_266_contigs.fasta -p nucmer -b -d -a -o sample_266_contigs_ordered +``` + +> ***ii. Use ACT to view contig alignment to reference genome*** + +- Use scp to get ordered fasta sequence and .cruch file onto your laptop + +``` +> Dont forget to change username and /path-to-local-ACT_contig_comparison-directory/ in the below command + +scp username@flux-xfer.arc-ts.umich.edu:/scratch/micro612w18_fluxod/username/day2_morn/sample_266_contigs_ordered* /path-to-previously-created-local-ACT_contig_comparison-directory/ + +``` + +- Read files into ACT + +``` +Go to File on top left corner of ACT window -> open +Sequence file 1 = KPNIH.gb +Comparison file 1 = sample_266_contigs_ordered.crunch +Sequence file 2 = sample_266_contigs_ordered.fasta + +Click Apply button + +Dont close the ACT window +``` + +- Notice that the alignment is totally beautiful now!!! Scan through the alignment and play with ACT features to look at genes present in reference but not in assembly. Keep the ACT window open for further visualizations. + +![alt tag](beautiful.png) + +Map reads to the final ordered assembly +--------------------------------------- +[[back to top]](day2_morning.html) +[[HOME]](index.html) + +You already know the drill/steps involved in reads mapping. Here, we will map the reads to the final ordered assembly genome instead of KPNIH1.fasta. + +- First create a bwa index of the ordered fasta file. + +``` +> Only proceed further if everything worked uptil now. Make sure you are in day2_morn directory. + +d2m + +#or + +cd /scratch/micro612w18_fluxod/username/day2_morn/ + +bwa index sample_266_contigs_ordered.fasta +samtools faidx sample_266_contigs_ordered.fasta + +``` + +- Align the trimmed reads which we used for genome assembly to this ordered assembly using BWA mem. Convert SAM to BAM. Sort and index it. + +``` + +bwa mem -M -R "@RG\tID:96\tSM:Rush_KPC_266_1_combine.fastq.gz\tLB:1\tPL:Illumina" -t 8 sample_266_contigs_ordered.fasta forward_paired.fq.gz reverse_paired.fq.gz > sample_266_contigs_ordered.sam + +samtools view -Sb sample_266_contigs_ordered.sam > sample_266_contigs_ordered.bam + +samtools sort sample_266_contigs_ordered.bam sample_266_contigs_ordered_sort + +samtools index sample_266_contigs_ordered_sort.bam + +``` + +- Lets visualize the alignments against our ordered assembly. + +Copy this sorted and indexed BAM files to local ACT_contig_comparison directory. + +``` +> Dont forget to change username and /path-to-local-ACT_contig_comparison-directory/ in the below command + +scp username@flux-xfer.arc-ts.umich.edu:/scratch/micro612w18_fluxod/username/day2_morn/sample_266_contigs_ordered_sort* /path-to-previously-created-local-ACT_contig_comparison-directory/ + +``` + +``` +Go back to ACT where your ordered contigs are still open in the window. + +Select File -> sample_266_contigs_ordered.fasta -> Read BAM/VCF > select sorted bam file(sample_266_contigs_ordered_sort.bam) you just copied from flux. +``` + +![alt tag](aligned_reads_deletion.png) + +Using abacas and ACT to compare VRE/VSE genome +---------------------------------------------- + +Now that we learned how ACT can be used to explore and compare genome organization and differences, try comparing VSE_ERR374928_contigs.fasta, a Vancomycin-susceptible Enterococcus against a Vancomycin-resistant Enterococcus reference genome Efaecium_Aus0085.fasta that are placed in VRE_vanB_comparison folder under day2_morn directory. The relevant reference genbank file that can be used in ACT is Efaecium_Aus0085.gbf. + +Genome Annotation +----------------- +[[back to top]](day2_morning.html) +[[HOME]](index.html) + +**Identify protein-coding genes with [Prokka](http://www.vicbioinformatics.com/software.prokka.shtml)** + +From our ACT comparison of our assembly and the reference we can clearly see that there is unique sequence in our assembly. However, we still don’t know what that sequence encodes! To try to get some insight into the sorts of genes unique to our assembly we will run a genome annotation pipeline called Prokka. Prokka works by first running *de novo* gene prediction algorithms to identify protein coding genes and tRNA genes. Next, for protein coding genes Prokka runs a series of comparisons against databases of annotated genes to generate putative annotations for your genome. + +> ***i. Run Prokka on assembly*** + +``` +prokka –setupdb +``` + +Execute Prokka on your ordered assembly + +``` +> Make sure you are in day2_morn directory. + +d2m + +#or + +cd /scratch/micro612w18_fluxod/username/day2_morn/ + +mkdir sample_266_prokka + +prokka -kingdom Bacteria -outdir sample_266_prokka -force -prefix sample_266 sample_266_contigs_ordered.fasta + +> Use scp or cyberduck to get Prokka annotated genome on your laptop. Dont forget to change username in the below command + +scp -r username@flux-xfer.arc-ts.umich.edu:/scratch/micro612w18_fluxod/username/day2_morn/sample_266_prokka/ /path-to-local-ACT_contig_comparison-directory/ + +``` + +> ***ii. Reload comparison into ACT now that we’ve annotated the un-annotated!*** + +Read files into ACT + +``` +Go to File on top left corner of ACT window -> open +Sequence file 1 = KPNIH.gb +Comparison file 1 = sample_266_contigs_ordered.crunch +Sequence file 2 = sample_266_contigs_ordered.gbf +``` + +- Play around with ACT to see what types of genes are unique to sample 266!!! diff --git a/docs/build/html/_sources/day3_afternoon.txt b/docs/build/html/_sources/day3_afternoon.txt new file mode 100644 index 0000000..f47affe --- /dev/null +++ b/docs/build/html/_sources/day3_afternoon.txt @@ -0,0 +1,237 @@ +Day 3 Afternoon +=============== +[[HOME]](index.html) + +Klebsiella pneumoniae comparative genomic analysis +-------------------------------------------------- + +To finish up the workshop we are going to go through the process of working up a complete dataset, from start to finish. This set of genomes originated from a regional outbreak of bla-KPC carrying Klebsiella pneumoniae – one of the most concerning healthcare associated pathogens. +The goal is to follow up on a previously [published](http://cid.oxfordjournals.org/content/53/6/532.abstract) epidemiologic analysis, and see if genomics supports prior epidemiologic conclusions and can provide additional insights. +We have our genomes, and we know in which regional facility each isolate originated. + +The goal of this exercise is to: + +1) process our genomes (QC, variant calling), + +2) perform a phylogenetic analysis and + +3) overlay our meta-data. + +To make this more difficult, the instructions will be much more vague than in previous sessions, and you will be challenged to use what you have learned, both in the past three days and in the prior workshop, to complete this analysis. + +Hopefully we’ve prepared you to take on the challenge, but remember this is an open book test! + +Feel free to lean on materials from the workshops, manuals of tools and Google (and of course instructors and neighbors). + +Execute the following command to copy files for this afternoon’s exercises to your scratch directory: + +``` + +cd /scratch/micro612w18_fluxod/username + +or + +wd + +cp -r /scratch/micro612w18_fluxod/shared/data/day3_after ./ + +``` + +Perform QC on fastq files +------------------------- +[[back to top]](day3_afternoon.html) +[[HOME]](index.html) + +On the first morning you ran FastQC to evaluate the quality of a single genome. However, a typical project will include many genomes and you will want to check the quality of all of your samples. From the bash workshop, I hope you can appreciate that you do not want to process 100 genomes by typing 100 commands – rather you want to write a short shell script to do the work for you! + + +> ***i. Edit the shell script fastqc.sh located in /scratch/micro612w18_fluxod/your username/day3_after to run FastQC on all fastq files.*** + +**Important info about this shell script** +- The shell script includes a for loop that loops over all of the genomes in the target directory +- The tricky part of this shell script is that each fastq command contains two files (forward and reverse reads). So, you need to take advantage of the fact that the forward and reverse read files both have the same prefix, and you can loop over these prefixes. +- You should be able to get prefixes by piping the following unix commands: ls, cut, sort, uniq +- The prefix should be a part of both forward and reverse reads. For example, the file_prefix for samples Rush_KPC_264_1_sequence.fastq.gz and Rush_KPC_264_2_sequence.fastq.gz should be Rush_KPC_264 +- when you are testing your shell script, comment out (using #) the lines below echo so you can see that if the script is 'echo'-ing the correct commands. +- Try running multiqc inside the script by adding the multiqc command with appropriate out directory +- Don't run multiqc inside for loop and should be run only after the for loop ends. + + +The fastq files are located in: + +``` +/scratch/micro612w18_fluxod/shared/data/day3_after_fastq/ +``` + +Rather than copying these to your directory, analyze the files directly in that directory, so everyone doesn’t have to copy 25G to their home directories. + +Copy and paste commands to run fastqc.sh as PBS script, into a PBS script and submit this PBS script as a job to the flux. + +Your PBS script wil contain the following command after the PBS preamble stuff(Make sure your $PBS_O_WORKDIR is set inside the pbs script): + +```bash fastqc.sh /scratch/micro612w18_fluxod/shared/data/day3_after_fastq/ ``` + + +> ***ii. Examine output of FastQC to verify that all samples are OK*** + +Check the multiqc report of your fastq files. + +Examine results of [SPANDx](http://www.ncbi.nlm.nih.gov/pubmed/25201145) pipeline +--------------------------- +[[back to top]](day3_afternoon.html) +[[HOME]](index.html) + +On the afternoon of day 1 we saw how many steps are involved in calling variants relative to a reference genome. However, the same steps are applied to every sample, which makes this very pipeline friendly! So, you could write your own shell script to string together these commands, or take advantage of one of several published pipelines. Here, we will use the output of the SPANDx pipeline, which takes as input a directory of fastq files and produces core variant and indel calls. + +More information on SPANDx pipeline can be obtained from [this](https://sourceforge.net/projects/spandx/files/SPANDx%20Manual_v3.1.pdf/download) manual. + +A snapshot of the pipeline is shown below: + +![alt tag](spandx.jpg) + +Because it takes a while to run, we have pre-run it for you. Your task will be to sort through the outputs of SPANDx. The detailed information about how to interpret the output is in SPANDx manual(section INTERPRETING THE OUTPUTS). + +> ***i. Look at overall statistics for variant calling in excel*** + +SPANDx produces an overall summary file of its run that includes: + +1) numbers of SNPs/indels, + +2) numbers of filtered SNPs/indels and + +3) average coverage across the reference genome. + +This summary file is in: Outputs/Single_sample_summary.txt + +Use less to look at this file and then apply unix commands to extract and sort individual columns + +**HINTS** +The following unix commands can be used to get sorted lists of coverage and numbers of SNPs/indels: tail, cut, sort + +> ***ii. Look at filtered variants produced by SPANDx in excel*** + +SPANDx also produces a summary file of the variants/indels it identified in the core genome. + +This summary file is: +```/scratch/micro612w18_fluxod/username/day3_after/SPANDx_output/Outputs/All_SNPs_annotated.txt ``` + +Use cyberduck/scp to download this file and view in excel + +- View SPANDx manual for interpretation of different columns which can be found [here](https://sourceforge.net/projects/spandx/files/SPANDx%20Manual_v3.1.pdf/download) +- Back on Flux, use grep to pull SNPs that have HIGH impact +- What types of mutations are predicted to have “HIGH” impact? +- How many genomes do these HIGH impact mutations tend to be present in? How do you interpret this? + +Recombination detection and tree generation +------------------------------------------- +[[back to top]](day3_afternoon.html) +[[HOME]](index.html) + +> ***i. Plot the distribution of variants across the genome in R*** + +The positions of variants are embedded in the first column of Outputs/Comparative/All_SNPs_annotated.txt, but you have to do some work to isolate them! + +**HINTS** + +- You will need to pipe together two “cut” commands: the first command will use tab as a delimiter and the second will use _. +- Note that for cut you can specify tab as the delimiter as follows: cut –d$’\t’ and _ as: cut -d ‘_’ +- You should redirect the output of your cut commands (a list of SNP positions) to a file called ‘snp_positions.txt’. For example, the first line of your snp_positions.txt should be: +``` +12695 +``` +- Finally, download this file, read it into R using ‘read.table’ and use ‘hist’ to plot a histogram of the positions +- Do you observe clustering of variants that would be indicative of recombination? + +> ***ii. Create fasta file of variants from nexus file*** + +SPANDx creates a file of core SNPs in a slightly odd format (transposed nexus). +This file is called: +```/scratch/micro612w18_fluxod/username/day3_after/SPANDx_output/Outputs/Comparative/Ortho_SNP_matrix.nex ``` + +For convenience, apply the custom perl script located in the same directory to convert it to fasta format + +``` +perl transpose_nex_to_fasta.pl Ortho_SNP_matrix.nex +``` + +This file Outputs/Comparative/Ortho_SNP_matrix.fasta should now exist + +> ***iii. Create maximum likelihood tree in Seaview*** + +``` + +Download Ortho_SNP_matrix.fasta to your home computer +Import the file into Seaview and construct a tree using PhyML (100 bootstraps) +Save tree for later analysis + +``` + +Phylogenetic tree annotation and visualization +---------------------------------------------- +[[back to top]](day3_afternoon.html) +[[HOME]](index.html) + +> ***i. Load the maximum likelihood tree into iTOL*** + +Note that because the out-group is so distantly related it is difficult to make out the structure of the rest of the tree. + +**To remedy this:** + +- Click on the KPNIH1 leaf, go to the “tree structure” menu and “delete leaf” +- Click on the extended branch leading to where KPNIH1 was, go to the “tree structure” menu and click “collapse branch” + +> ***ii. Load the annotation file ‘Rush_KPC_facility_codes_iTOL.txt’ to view the facility of isolation, play with tree visualization properties to understand how isolates group by facility, Circular vs. normal tree layout, Bootstrap values, Ignoring branch lengths*** + +``` + +Which facilities appear to have a lot of intra-facility transmission based on grouping of isolates from the same facility? +Which patient’s infections might have originated from the blue facility? + +``` + +Assessment of genomic deletions +------------------------------- +[[back to top]](day3_afternoon.html) +[[HOME]](index.html) + +> ***i. Download genome coverage bed file and load into R*** + +This file is located in: Outputs/Comparative/Bedcov_merge.txt +This file contains information regarding locations in the reference genome that each sequenced genome does and does not map to. + +The first 3 columns of the file are: + +1) the name of the reference, + +2) the start coordinate of the window and + +3) the end coordinate of the window + +The remaining columns are your analyzed genomes, with the values indicating the fraction of the window covered by reads in that genome. + +In essence, this file contains information on parts of the reference genome that might have been deleted in one of our sequenced genomes. + +After you download this file, read it into R + +**HINTS** +- Use the read.table function with the relevant parameters being: header and sep + +> ***ii. Plot heatmap of genome coverage bed file*** + +**HINTS** + +- The first 3 columns of the bed file specify the name of the chromosome and the genome coordinates – therefore you want to subset your matrix to not include these columns +- Use the heatmap3 function to make your heatmap with the following parameters: scale = “none” (keeps original values), Rowv = NA (suppress clustering by rows – why might we not want to cluster by rows for this analysis?) + +- Note a large genomic deletion among a subset of isolates. Does this deletion fit with the phylogeny from above? + +iii. Explore genomic deletion in more detail with ACT + +- Use abacus to orient contigs from Rush_KPC_298 to KPNIH +- Load KPNIH.gb, Rush_KPC_298_ordered and the .crunch alignment into ACT + +``` + +What genes appear to have been lost? + +``` diff --git a/docs/build/html/_sources/day3_morning.txt b/docs/build/html/_sources/day3_morning.txt new file mode 100644 index 0000000..a8794fc --- /dev/null +++ b/docs/build/html/_sources/day3_morning.txt @@ -0,0 +1,415 @@ +Day 3 Morning +============= +[[HOME]](index.html) + +On day 1, we ran through a pipeline to map reads against a reference genome and call variants, but didn’t do much with the variants we identified. Among the most common analyses to perform on a set of variants is to construct phylogenetic trees. Here we will explore different tools for generating and visualizing phylogenetic trees, and also see how recombination can distort phylogenetic signal. + +For the first several exercises, we will use the A. baumannii genomes that we worked with yesterday afternoon. +The backstory on these genomes is that Abau_A, Abau_B and Abau_C are representatives of three clones (as defined by pulsed-field gel electrophoresis - a low-resolution typing method) that were circulating in our hospital. + +One of the goals of our published study was to understand the relationship among these clones to discern whether: + +1) the three clones represent three independent introductions into the hospital or + +2) the three clones originated from a single introduction into the hospital, with subsequent genomic rearrangement leading to the appearance of unique clones. + +The types of phylogenetic analyses you will be performing here are the same types that we used to decipher this mystery. +The other two genomes you will be using are ACICU and AB0057. ACICU is an isolate from a hospital in France, and its close relationship to our isolates makes it a good reference for comparison. AB0057 is a more distantly related isolate that we will utilize as an out-group in our phylogenetic analysis. The utility of an out-group is to help us root our phylogenetic tree, and gain a more nuanced understanding of the relationship among strains. + +Execute the following command to copy files for this afternoon’s exercises to your scratch directory: + +``` +wd + +#or + +cd /scratch/micro612w18_fluxod/username + +cp -r /scratch/micro612w18_fluxod/shared/data/day3_morn ./ + +``` + +Perform whole genome alignment with [Mauve](http://darlinglab.org/mauve/mauve.html) and convert alignment to other useful formats +------------------------------------------- +[[back to top]](day3_morning.html) +[[HOME]](index.html) + +An alternative approach for identification of variants among genomes is to perform whole genome alignments of assemblies. If the original short read data is unavailable, this might be the only approach available to you. Typically, these programs don’t scale well to large numbers of genomes (e.g. > 100), but they are worth being familiar with. We will use the tool mauve for constructing whole genome alignments of our five A. baumannii genomes. + +> ***i. Perform mauve alignment and transfer xmfa back to flux*** + +Use cyberduck/scp to get genomes folder Abau_genomes onto your laptop + +``` +Run these commands on your local system/terminal: + +cd ~/Desktop (or wherever your desktop is) + +mkdir Abau_mauve + +cd Abau_mauve + +- Now copy Abau_genomes folder residing in your day3_morn folder using scp or cyberduck: + +scp -r username@flux-xfer.arc-ts.umich.edu:/scratch/micro612w18_fluxod/username/day3_morn/Abau_genomes ./ + +``` + +Run mauve to create multiple alignment + +``` + +i. Open mauve +ii. File -> align with progressiveMauve +iii. Click on “Add Sequnce” and add each of the 5 genomes you just downloaded +iv. Name the output file “mauve_ECII_outgroup” and make sure it is in the directory you created for this exercise +v. Click Align! +vi. Wait for Mauve to finish and explore the graphical interface + +``` + +Use cyberduck or scp to transfer your alignment back to flux for some processing + +``` + +scp ~/Desktop/Abau_mauve/mauve_ECII_outgroup username@flux-xfer.arc-ts.umich.edu:/scratch/micro612w18_fluxod/username/day3_morn + +``` + +> ***ii. Convert alignment to fasta format*** + +Mauve produces alignments in .xmfa format (use less to see what this looks like), which is not compatible with other programs we want to use. We will use a custom script convert_msa_format.pl to change the alignment format to fasta format + + +``` +Now run these command in day3_morn folder on flux: + +module load bioperl + +perl convert_msa_format.pl -i mauve_ECII_outgroup -o mauve_ECII_outgroup.fasta -f fasta -c + +``` + +Perform some DNA sequence comparisons and phylogenetic analysis in [APE](http://ape-package.ird.fr/), an R package +------------------------------------------------------------------------ +[[back to top]](day3_morning.html) +[[HOME]](index.html) + +There are lots of options for phylogenetic analysis. Here, we will use the ape package in R to look at our multiple alignments and construct a tree using the Neighbor Joining method. + +Note that ape has a ton of useful functions for more sophisticated phylogenetic analyses! + +> ***i. Get fasta alignment you just converted to your own computer using cyberduck or scp*** + +``` + +cd ~/Desktop/Abau_mauve + + +scp username@flux-xfer.arc-ts.umich.edu:/scratch/micro612w18_fluxod/username/day3_morn/mauve_ECII_outgroup.fasta ./ + +``` + +> ***ii. Read alignment into R*** + +Fire up RStudio, set your working directory to ~/Desktop/Abau_mauve/ or wherever you have downloaded mauve_ECII_outgroup.fasta file and install/load ape + +Use the read.dna function in ape to read in you multiple alignments. +Print out the variable to get a summary. + +``` +setwd("~/Desktop/Abau_mauve/") +install.packages("ape") +library(ape) +abau_msa = read.dna('mauve_ECII_outgroup.fasta', format = "fasta") +``` + +> ***iii. Get variable positions*** + +The DNA object created by read.dna can also be addressed as a matrix, where the columns are positions in the alignment and rows are your sequences. We will next treat our alignment as a matrix, and use apply and colSums to get positions in the alignment that vary among our sequences. Examine these commands in detail to understand how they are working together to give you a logical vector indicating which positions vary in your alignment. + +``` + +abau_msa_bin = apply(abau_msa, 2, FUN = function(x){x == x[1]}) + +abau_var_pos = colSums(abau_msa_bin) < 5 +``` + +> ***iv. Get non-gap positions*** + +For our phylogenetic analysis we want to focus on the core genome, so we will next identify positions in the alignment where all our genomes have sequence. + +``` +non_gap_pos = colSums(as.character(abau_msa) == '-') == 0 +``` + +> ***v. Count number of variants between sequences*** + +Now that we know which positions in the alignment are core and variable, we can extract these positions and count how many variants there are among our genomes. Do count pairwise variants we will use the dist.dna function in ape. The model parameter indicates that we want to compare sequences by counting differences. Print out the resulting matrix to see how different our genomes are. + +``` + +abau_msa_var = abau_msa[,abau_var_pos & non_gap_pos ] +var_count_matrix = dist.dna(abau_msa_var, model = "N") + +``` + +> ***vi. Construct phylogenetic tree*** + +Now we are ready to construct our first phylogenetic tree! + +We are going to use the Neighbor Joining algorithm, which takes a matrix of pairwise distances among the input sequences and produces the tree with the minimal total distance. In essence, you can think of this as a distance-based maximum parsimony algorithm, with the advantage being that it runs way faster than if you were to apply a standard maximum parsimony phylogenetic reconstruction. + +As a first step we are going to build a more accurate distance matrix, where instead of counting variants, we will measure nucleotide distance using the Jukes-Cantor model of sequence evolution. This is the simplest model of sequence evolution, with a single mutation rate assumed for all types of nucleotide changes. + +``` +dna_dist_JC = dist.dna(abau_msa, model = "JC") +``` + +Next, we will use the ape function nj to build our tree from the distance matrix + +``` +abau_nj_tree = nj(dna_dist_JC) +``` + +Finally, plot your tree to see how the genomes group. + +``` +plot(abau_nj_tree) +``` + +Perform SNP density analysis to discern evidence of recombination +----------------------------------------------------------------- +[[back to top]](day3_morning.html) +[[HOME]](index.html) + +An often-overlooked aspect of a proper phylogenetic analysis is to exclude recombinant sequences. Homologous recombination in bacterial genomes is a mode of horizontal transfer, wherein genomic DNA is taken up and swapped in for a homologous sequence. The reason it is critical to account for these recombinant regions is that these horizontally acquired sequences do not represent the phylogenetic history of the strain of interest, but rather in contains information regarding the strain in which the sequence was acquired from. One simple approach for detecting the presence of recombination is to look at the density of variants across a genome. The existence of unusually high or low densities of variants is suggestive that these regions of aberrant density were horizontally acquired. Here we will look at our closely related A. baumannii genomes to see if there is evidence of aberrant variant densities. + +> ***i. Subset sequences to exclude the out-group*** + +For this analysis we want to exclude the out-group, because we are interested in determining whether recombination would hamper our ability to reconstruct the phylogenetic relationship among our closely related set of genomes. + +- Note that the names of the sequences might be different for you, so check that if the command doesn’t work. + +``` + +abau_msa_no_outgroup = abau_msa[c('ACICU_genome','AbauA_genome','AbauC_genome','AbauB_genome'),] + +``` + +> ***ii. Get variable positions*** + +Next, we will get the variable positions, as before + +``` + +abau_msa_no_outgroup_bin = apply(abau_msa_no_outgroup, 2, FUN = function(x){x == x[1]}) + +abau_no_outgroup_var_pos = colSums(abau_msa_no_outgroup_bin) < 4 + +``` + +> ***iii. Get non-gap positions*** + +Next, we will get the core positions, as before + +``` + +abau_no_outgroup_non_gap_pos = colSums(as.character(abau_msa_no_outgroup) == '-') == 0 + +``` + +> ***iv. Create overall histogram of SNP density*** + +Finally, create a histogram of SNP density across the genome. Does the density look even, or do you think there might be just a touch of recombination? + +``` +hist(which(abau_no_outgroup_var_pos & abau_no_outgroup_non_gap_pos), 10000) +``` + +Perform recombination filtering with [Gubbins](https://www.google.com/search?q=gubbins+sanger&ie=utf-8&oe=utf-8) +---------------------------------------------- +[[back to top]](day3_morning.html) +[[HOME]](index.html) + +Now that we know there is recombination, we know that we need to filter out the recombinant regions to discern the true phylogenetic relationship among our strains. In fact, this is such an extreme case (~99% of variants of recombinant), that we could be totally misled without filtering recombinant regions. To accomplish this we will use the tool gubbins, which essentially relies on elevated regions of variant density to perform recombination filtering. + +> ***i. Run gubbins on your fasta alignment*** + +Go back on flux and load modules required by gubbins + + + +``` + +module load bioperl python-anaconda2/201607 biopython dendropy reportlab fasttree RAxML fastml/gub gubbins + +``` + +Run gubbins on your fasta formatted alignment + +``` +d3m + +#or + +cd /scratch/micro612w18_fluxod/username/day3_morn + +run_gubbins.py -v -f 50 -o Abau_AB0057_genome mauve_ECII_outgroup.fasta + +``` + +> ***ii. Create gubbins output figure*** + +Gubbins produces a series of output files, some of which can be run through another program to produce a visual display of filtered recombinant regions. Run the gubbins_drawer.py script to create a pdf visualization of recombinant regions. + +The inputs are: + +1) the recombination filtered tree created by gubbins (mauve_ECII_outgroup.final_tree.tre), + +2) the pdf file to create (mauve_ECII_outgroup.recombination.pdf) and + +3) a .embl representation of recombinant regions (mauve_ECII_outgroup.recombination_predictions.embl). + +``` + +gubbins_drawer.py -t mauve_ECII_outgroup.final_tree.tre -o mauve_ECII_outgroup.recombination.pdf mauve_ECII_outgroup.recombination_predictions.embl + +``` +> ***iii. Download and view gubbins figure and filtered tree*** + +Use cyberduck or scp to get gubbins output files into Abau_mauve on your local system + +``` + +cd ~/Desktop/Abau_mauve + +scp username@flux-xfer.arc-ts.umich.edu:/scratch/micro612w18_fluxod/username/day3_morn/mauve_ECII_outgroup.recombination.pdf ./ +scp username@flux-xfer.arc-ts.umich.edu:/scratch/micro612w18_fluxod/username/day3_morn/mauve_ECII_outgroup.final_tree.tre ./ + +``` + +Open up the pdf and observe the recombinant regions filtered out by gubbins. Does it roughly match your expectations based upon your SNP density plots? + +Finally, lets look at the recombination-filtered tree to see if this alters our conclusions. + +To view the tree we will use [Seaview](http://doua.prabi.fr/software/seaview), which is a multi-purpose tool for: + +1) visualization/construction of multiple alignments and + +2) phylogenetic tree construction. + +Here, we will just use Seaview to view our gubbins tree. + +``` + +In seaview: + +Go to Trees -> import tree (mauve_ECII_outgroup.final_tree.tre) +To view sub-tree of interest click on “sub-tree” and select the sub-tree excluding the out-group + +``` + + +How does the structure look different than the unfiltered tree? + +- Note that turning back to the backstory of these isolates, Abau_B and Abau_C were both isolated first from the same patient. So this analysis supports that patient having imported both strains, which likely diverged at a prior hospital at which they resided. + +Create annotated publication quality trees with [iTOL](http://itol.embl.de/) +------------------------------------------------------ +[[back to top]](day3_morning.html) +[[HOME]](index.html) + +For the final exercise we will use a different dataset, composed of USA300 methicillin-resistant Staphylococcus aureus genomes. USA300 is a strain of growing concern, as it has been observed to cause infections in both hospitals and in otherwise healthy individuals in the community. An open question is whether there are sub-clades of USA300 in the hospital and the community, or if they are all the same. Here you will create an annotated phylogenetic tree of strains from the community and the hospital, to discern if these form distinct clusters. + +> ***i. Download MRSA genome alignment from flux*** + +Use cyberduck or scp to get genomes onto your laptop + +``` + +cd ~/Desktop (or wherever your desktop is) +mkdir MRSA_genomes +cd MRSA_genomes + +scp username@flux-xfer.arc-ts.umich.edu:/scratch/micro612w18_fluxod/username/day3_morn/2016-3-9_KP_BSI_USA300.fa ./ +scp username@flux-xfer.arc-ts.umich.edu:/scratch/micro612w18_fluxod/username/day3_morn/2016-3-9_KP_BSI_USA300_iTOL_HA_vs_CA.txt ./ + + +``` + +> ***ii. Look at SNP density for MRSA alignment in R*** + +Before we embark on our phylogenetic analysis, lets look at the SNP density to verify that there is no recombination + +``` + +mrsa_msa = read.dna('2016-3-9_KP_BSI_USA300.fa', format = 'fasta') +mrsa_msa_bin = apply(mrsa_msa, 2, FUN = function(x){x == x[1]}) +mrsa_var_pos = colSums(mrsa_msa_bin) < nrow(mrsa_msa_bin) +hist(which(mrsa_var_pos), 10000) + +``` + +Does it look like there is evidence of recombination? + +> ***iii. Create fasta alignment with only variable positions*** + +Next, lets create a new fasta alignment file containing only the variant positions, as this will be easier to deal with in Seaview + +``` + +write.dna(mrsa_msa[, mrsa_var_pos], file = '2016-3-9_KP_BSI_USA300_var_pos.fa', format = 'fasta') + +``` + +> ***iv. Read alignment into Seaview and construct Neighbor Joining tree*** + +In the previous exercise, we used Seaview to look at a pre-existing tree, here we will use Seaview to create a tree from a +multiple sequence alignment + +Read in multiple alignment of variable positions + +``` +Go to File -> open ('2016-3-9_KP_BSI_USA300_var_pos.fa) +``` + +Construct Neighbor Joining phylogenetic tree with default parameters (note, this will take a few minutes) + +``` +Go to Trees -> select Distance Methods -> BioNJ -> (Select Bootstrap with 20 replicates) -> Go +``` + +Save your tree + +``` +File -> Save rooted tree +``` + +Note that in your research it is not a good idea to use these phylogenetic tools completely blind and I strongly encourage embarking on deeper learning yourself, or consulting with an expert before doing an analysis for a publication + +> ***v. Read tree into iTOL*** + +``` + +To make a prettier tree and add annotations we will use iTOL (http://itol.embl.de/). + +Go to http://itol.embl.de/ + +To load your tree, click on upload, and select the rooted tree you just created in Seaview + +``` + +Explore different visualization options for your tree (e.g. make it circular, show bootstrap values, try collapsing nodes/branches) + +Note that you can always reset your tree if you are unhappy with the changes you’ve made + +> ***vi. Add annotations to tree*** + +One of the most powerful features of iTOL is its ability to overlay diverse types of descriptive meta-data on your tree (http://itol.embl.de/help.cgi#datasets). Here, we will overlay our data on whether an isolate was from a community or hospital infection. To do this simply drag-and-drop the annotation file (2016-3-9_KP_BSI_USA300_iTOL_HA_vs_CA.txt) on your tree and voila! + +- Do community and hospital isolates cluster together, or are they inter-mixed? + diff --git a/docs/build/html/_sources/index.rst.txt b/docs/build/html/_sources/index.rst.txt new file mode 100644 index 0000000..b2886b8 --- /dev/null +++ b/docs/build/html/_sources/index.rst.txt @@ -0,0 +1,22 @@ +.. Micro 612 genomics workshop documentation master file, created by + sphinx-quickstart on Wed Feb 21 14:56:51 2018. + You can adapt this file completely to your liking, but it should at least + contain the root `toctree` directive. + +Welcome to Micro 612 genomics workshop's documentation! +======================================================= + +Contents: + +.. toctree:: + :maxdepth: 2 + + + +Indices and tables +================== + +* :ref:`genindex` +* :ref:`modindex` +* :ref:`search` + diff --git a/docs/build/html/_sources/index.txt b/docs/build/html/_sources/index.txt new file mode 100644 index 0000000..b06f04d --- /dev/null +++ b/docs/build/html/_sources/index.txt @@ -0,0 +1,27 @@ + +Microbial Comparative Genomics Workshop +======================================= + +A 3 day microbial bioinformatics workshop conducted by `Dr. Evan Snitkin `_ at `University of Michigan `_. This module covers the basics of microbial genomic analysis using publicly available tools that are commonly referenced in genomics literature. Students will learn the steps and associated tools that are required to process, annotate and compare microbial genomes. + +Date: Feb 28 - 2 March 2018 + +Prerequisites +------------- + +Prior participation in a `Software Carpentry Workshop `_ + +Workshop +-------- + +.. toctree:: + :maxdepth: 5 + + day1_morning + day1_afternoon + day2_morning + day2_afternoon + day3_morning + day3_afternoon + online_resources + diff --git a/docs/build/html/_sources/index_backup.txt b/docs/build/html/_sources/index_backup.txt new file mode 100644 index 0000000..1927aa7 --- /dev/null +++ b/docs/build/html/_sources/index_backup.txt @@ -0,0 +1,78 @@ +Microbial Comparative Genomics Workshop +======================================= + +***A 3 day microbial bioinformatics workshop conducted by [Dr. Evan Snitkin](http://thesnitkinlab.com/index.php) at [University of Michigan](https://www.umich.edu/). This module covers the basics of microbial genomic analysis using publicly available tools that are commonly referenced in genomics literature. Students will learn the steps and associated tools that are required to process, annotate and compare microbial genomes.*** + +***Date: Feb 28 - 2 March 2018*** +*** + + +Prerequisites +------------- + +- Prior participation in a [Software Carpentry Workshop](https://umswc.github.io/2018-02-26-UMich/) +*** + + +Link +---- + +GOTO: http://comparative-genomics.readthedocs.io/en/latest/index.html# +*** + +Workshop +-------- + +[Day 1 Morning](day1_morning.html) +*** +- [Installing and setting up Cyberduck for file transfer](day1_morning.html#installing-and-setting-up-cyberduck-for-file-transfer) +- [Getting your data onto Flux and setting up Environment variable](day1_morning.html#getting-your-data-onto-glux-and-setting-up-environment-variable) +- [Unix is your friend](day1_morning.html#unix-is-your-friend) +- [Quality Control using FastQC](day1_morning.html#quality-control-using-fastqc) +- [Quality Trimming using Trimmomatic](day1_morning.html#quality-trimming-using-trimmomatic) + +[Day 1 Afternoon](day1_afternoon.html#day-1-afternoon) +*** +- [Read Mapping](day1_afternoon.html#read-mapping) +- [Variant Calling](day1_afternoon.html#variant-calling-and-filteration) +- [Visualize BAM/VCF files in Artemis](day1_afternoon.html#visualize-bam-and-vcf-files-in-artemis) + +[Day 2 Morning](day2_morning.html#day-2-morning) +*** +- [Genome Assembly](day2_morning.html#genome-assembly) +- [Assembly evaluation](day2_morning.html#assembly-evaluation-using-quast) +- [Compare assembly to reference genome and Post-assembly genome improvement](day2_morning.html#compare-assembly-to-reference-genome-and-post-assembly-genome-improvement) +- [Map reads to the final ordered assembly](day2_morning.html#map-reads-to-the-final-ordered-assembly) +- [Genome Annotation](day2_morning.html#genome-annotation) + +[Day 2 Afternoon](day2_afternoon.html#day-2-afternoon) +*** +- [Determine which genomes contain beta-lactamase genes](day2_afternoon.html#determine-which-genomes-contain-beta-lactamase-genes) +- [Identification of antibiotic resistance genes with ARIBA directly from paired-end reads](day2_afternoon.html#identification-of-antibiotic-resistance-genes-with-ariba-directly-from-paired-end-reads) +- [Perform pan-genome analysis with Roary](day2_afternoon.html#perform-pan-genome-analysis-with-roary) + +[Day 3 Morning](day3_morning.html#day-3-morning) +*** +- [Perform whole genome alignment with Mauve](day3_morning.html#perform-whole-genome-alignment-with-Mauve) +- [Perform DNA sequence comparisons and phylogenetic analysis in ape](day3_morning.html#perform-some-dna-sequence-comparisons-and-phylogenetic-analysis-in-ape) +- [Perform SNP density analysis to discern evidence of recombination](day3_morning.html#perform-snp-density-analysis-to-discern-evidence-of-recombination) +- [Perform recombination filtering with gubbins](day3_morning.html#perform-recombination-filtering-with-gubbins) +- [Create annotated publication quality trees with iTOL](day3_morning.html#create-annotated-publication-quality-trees-with-itol) + +[Day 3 Afternoon](day3_afternoon.html#day-3-afternoon) +*** +- [Perform QC on fastq files](day3_afternoon.html#perform-qc-on-fastq-files) +- [Examine results of SPANDx pipeline](day3_afternoon.html#examine-results-of-spandx-pipeline) +- [Recombination detection and tree generation](day3_afternoon.html#recombination-detection-and-tree-generation) +- [Phylogenetic tree annotation and visualization](day3_afternoon.html#phylogenetic-tree-annotation-and-visualization) +- [Assessment of genomic deletions](day3_afternoon.html#assessment-of-genomic-deletions) + + + +[Helpful resources for microbial genomics](online_resources.html#helpful-resources-for-microbial-genomics) +*** diff --git a/docs/build/html/_sources/index_temp.txt b/docs/build/html/_sources/index_temp.txt new file mode 100644 index 0000000..cd17270 --- /dev/null +++ b/docs/build/html/_sources/index_temp.txt @@ -0,0 +1,61 @@ +Bacterial Comparative Genomics Workshop +======================================= + +A 3 day microbial bioinformatics workshop conducted by `Dr. Evan Snitkin`_ at `University of Michigan`_. This module covers the basics of microbial genomic analysis using publicly available tools that are commonly referenced in genomics literature. Students will learn the steps and associated tools that are required to process, annotate and compare microbial genomes. +^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ + +Date: Feb 28 - 2 March 2018 +^^^^^^^^^^^^^^^^^^^^^^^^^^^ + +.. raw:: html + + + +-------------- + +Prerequisites: +^^^^^^^^^^^^^^ + +- Prior participation in a `Software Carpentry Workshop`_ + +.. raw:: html + + + +-------------- + +Workshop: +^^^^^^^^^ + +`Day 1 Morning`_ \**\* - `Getting your data onto Flux and setting up +Environment variable`_ - `Unix is your friend`_ - `Quality Control using +FastQC`_ - `Quality Trimming using Trimmomatic`_ + +`Day 1 Afternoon`_ \**\* - `Read Mapping`_ - `Variant Calling`_ - +`Visualize BAM/VCF files in Artemis`_ + +`Day 2 Morning`_ \**\* - `Genome Assembly`_ - `Assembly evaluation`_ - +`Compare assembly to reference genome and Post-assembly genome +improvement`_ - [Map reads to th + +.. _Dr. Evan Snitkin: http://thesnitkinlab.com/index.php +.. _University of Michigan: https://www.umich.edu/ +.. _Software Carpentry Workshop: https://umswc.github.io/2018-02-26-UMich/ +.. _Day 1 Morning: https://github.com/alipirani88/Comparative_Genomics/blob/master/day1_morning/README.md +.. _Getting your data onto Flux and setting up Environment variable: https://github.com/alipirani88/Comparative_Genomics/blob/master/day1_morning/README.md#getting-your-data-onto-glux-and-setting-up-environment-variable +.. _Unix is your friend: https://github.com/alipirani88/Comparative_Genomics/blob/master/day1_morning/README.md#unix-is-your-friend +.. _Quality Control using FastQC: https://github.com/alipirani88/Comparative_Genomics/blob/master/day1_morning/README.md#quality-control-using-fastqc +.. _Quality Trimming using Trimmomatic: https://github.com/alipirani88/Comparative_Genomics/blob/master/day1_morning/README.md#quality-trimming-using-trimmomatic +.. _Day 1 Afternoon: https://github.com/alipirani88/Comparative_Genomics/blob/master/day1_afternoon/README.md#day-1-afternoon +.. _Read Mapping: https://github.com/alipirani88/Comparative_Genomics/blob/master/day1_afternoon/README.md#read-mapping +.. _Variant Calling: https://github.com/alipirani88/Comparative_Genomics/blob/master/day1_afternoon/README.md#variant-calling-and-filteration +.. _Visualize BAM/VCF files in Artemis: https://github.com/alipirani88/Comparative_Genomics/blob/master/day1_afternoon/README.md#visualize-bam-and-vcf-files-in-artemis +.. _Day 2 Morning: https://github.com/alipirani88/Comparative_Genomics/blob/master/day2_morning/README.md#day-2-morning +.. _Genome Assembly: https://github.com/alipirani88/Comparative_Genomics/blob/master/day2_morning/README.md#genome-assembly +.. _Assembly evaluation: https://github.com/alipirani88/Comparative_Genomics/blob/master/day2_morning/README.md#assembly-evaluation-using-quast +.. _Compare assembly to reference genome and Post-assembly genome improvement: https://github.com/alipirani88/Comparative_Genomics/blob/master/day2_morning/README.md#compare-assembly-to-reference-genome-and-post-assembly-genome-improvement diff --git a/docs/build/html/_sources/online_resources.txt b/docs/build/html/_sources/online_resources.txt new file mode 100644 index 0000000..bbd36b4 --- /dev/null +++ b/docs/build/html/_sources/online_resources.txt @@ -0,0 +1,142 @@ +# Helpful resources for microbial genomics + +***If you were not able to follow the video, here is the [link](https://www.youtube.com/watch?v=womKfikWlxM) to illumina Sequencing*** + +[[HOME]](index.html) + +**General Bioinformatics resources** + +- [Omictools](http://omictools.com/) + +- [Bioinformatics One-liners by Stephen Turner](https://github.com/stephenturner/oneliners) + +- [QC Fail: Explaining your errors](https://sequencing.qcfail.com/) + + +**Short read processing** + +- [FastQC](http://www.bioinformatics.babraham.ac.uk/projects/fastqc/) + +- Trimmomatic: [Home](http://www.usadellab.org/cms/?page=trimmomatic) [Manual](http://www.usadellab.org/cms/uploads/supplementary/Trimmomatic/TrimmomaticManual_V0.32.pdf) + +- [bwa](http://bio-bwa.sourceforge.net/) + +- [bowtie](http://bowtie-bio.sourceforge.net/index.shtml) + +- [samtools](http://samtools.sourceforge.net/) + +- [vcftools](http://vcftools.sourceforge.net/) + +- [bcftools](https://samtools.github.io/bcftools/bcftools.html) + +- [gatk](https://www.broadinstitute.org/gatk/) + +- [picard](http://broadinstitute.github.io/picard/) + +- [SPANDx](https://github.com/dsarov/SPANDx) + +- [Snippy](https://github.com/tseemann/snippy) + +**Genome assembly** + +- [Spades](http://bioinf.spbau.ru/spades) + +- [Velvet](https://www.ebi.ac.uk/~zerbino/velvet/) + +- [Mira](https://sourceforge.net/p/mira-assembler/wiki/Home/) + +- [A5](https://sourceforge.net/p/ngopt/wiki/browse_pages/) + +**Genome alignment** + +- [Mauve](http://darlinglab.org/mauve/download.html) + +- [MUMmer](http://mummer.sourceforge.net/) + +- [Mugsy](http://mugsy.sourceforge.net/) + +**Visualization of genomic data** + +- [Artemis](http://www.sanger.ac.uk/science/tools/artemis) + +- [Artemis Comparison Tool](http://www.sanger.ac.uk/science/tools/artemis-comparison-tool-act) + +- [IGV](https://www.broadinstitute.org/igv/) + +**Genome annotation** + +- [Prokka](http://www.vicbioinformatics.com/software.prokka.shtml) + +- [Blastall](https://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE_TYPE=BlastDocs&DOC_TYPE=Download) + +- [LS-BSR](https://github.com/jasonsahl/LS-BSR) + +**Phylogenetic tools and resources** + +- Visualization + + - [Seaview](http://doua.prabi.fr/software/seaview) + + - [iTOL](http://itol.embl.de/) + + - [Figtree](http://tree.bio.ed.ac.uk/software/figtree/) + +- Phylogenetic software + + - [PAUP](http://paup.csit.fsu.edu/) + + - [RaxML](http://sco.h-its.org/exelixis/software.html) + + - [PhyML](http://www.atgc-montpellier.fr/phyml/) + + - [BEAST](http://beast.bio.ed.ac.uk/) + + - [PHYLIP](http://evolution.genetics.washington.edu/phylip.html) + + - [APE](http://ape-package.ird.fr/) + + - [Microreact](http://microreact.org/showcase/) + + - Recombination detection + + - [Gubbins](http://www.sanger.ac.uk/science/tools/gubbins) + + - [ClonalFrame](http://www.xavierdidelot.xtreemhost.com/clonalframe.htm?ckattempt=1) + + - [List of Phylogeny Programs](http://evolution.genetics.washington.edu/phylip/software.html) + +**Databases** + +- [ARDB](http://ardb.cbcb.umd.edu/) + +- [PATRIC](https://www.patricbrc.org/portal/portal/patric/Home) + + +**Video Resources you should watch and follow** + + +- [FastQC](https://www.youtube.com/watch?v=bz93ReOv87Y) + +- [NHGRI](https://www.youtube.com/user/GenomeTV) + +- [Broad Institute](https://www.youtube.com/channel/UCv4IbnP9j9RC_aZAs8wqdeQ) + +- [Cold Spring Harbor Lab](https://www.youtube.com/channel/UCVqWctrxf5-oBIM1lqOIt-A) + +- [NCBI](https://www.youtube.com/user/NCBINLM/videos) + +- [Bioinformatics courses from MIT](https://www.youtube.com/channel/UCEBb1b_L6zDS3xTUrIALZOw) + +- Youtube [Channel](https://www.youtube.com/channel/UC1lb9cYp9wt8xjF3APM9bMw) of [Rafael Irizarry](http://rafalab.dfci.harvard.edu/) covering various topics on NGS analysis and statistics involved in it. + +**[101 Questions: a series of interviews with notable bioinformaticians](http://www.acgt.me/blog/2014/3/25/101-questions-a-new-series-of-interviews-with-notable-bioinformaticians)** + +**[Bioinformatics is just like bench science and should be treated as such](http://cabbagesofdoom.blogspot.com/2015/08/bioinformatics-is-just-like-bench.html)** + +**Unix/Command line** + +- [command-line bootcamp](http://rik.smith-unna.com/command_line_bootcamp/?id=9xnbkx6eaof) + +- [Code academy](https://www.codecademy.com/en/courses/learn-the-command-line) + + diff --git a/docs/build/html/_sources/test.txt b/docs/build/html/_sources/test.txt new file mode 100644 index 0000000..b06f04d --- /dev/null +++ b/docs/build/html/_sources/test.txt @@ -0,0 +1,27 @@ + +Microbial Comparative Genomics Workshop +======================================= + +A 3 day microbial bioinformatics workshop conducted by `Dr. Evan Snitkin `_ at `University of Michigan `_. This module covers the basics of microbial genomic analysis using publicly available tools that are commonly referenced in genomics literature. Students will learn the steps and associated tools that are required to process, annotate and compare microbial genomes. + +Date: Feb 28 - 2 March 2018 + +Prerequisites +------------- + +Prior participation in a `Software Carpentry Workshop `_ + +Workshop +-------- + +.. toctree:: + :maxdepth: 5 + + day1_morning + day1_afternoon + day2_morning + day2_afternoon + day3_morning + day3_afternoon + online_resources + diff --git a/docs/build/html/_static/ajax-loader.gif b/docs/build/html/_static/ajax-loader.gif new file mode 100644 index 0000000..61faf8c Binary files /dev/null and b/docs/build/html/_static/ajax-loader.gif differ diff --git a/docs/build/html/_static/alabaster.css b/docs/build/html/_static/alabaster.css new file mode 100644 index 0000000..be65b13 --- /dev/null +++ b/docs/build/html/_static/alabaster.css @@ -0,0 +1,693 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +@import url("basic.css"); + +/* -- page layout ----------------------------------------------------------- */ + +body { + font-family: 'goudy old style', 'minion pro', 'bell mt', Georgia, 'Hiragino Mincho Pro', serif; + font-size: 17px; + background-color: #fff; + color: #000; + margin: 0; + padding: 0; +} + + +div.document { + width: 940px; + margin: 30px auto 0 auto; +} + +div.documentwrapper { + float: left; + width: 100%; +} + +div.bodywrapper { + margin: 0 0 0 220px; +} + +div.sphinxsidebar { + width: 220px; + font-size: 14px; + line-height: 1.5; +} + +hr { + border: 1px solid #B1B4B6; +} + +div.body { + background-color: #fff; + color: #3E4349; + padding: 0 30px 0 30px; +} + +div.body > .section { + text-align: left; +} + +div.footer { + width: 940px; + margin: 20px auto 30px auto; + font-size: 14px; + color: #888; + text-align: right; +} + +div.footer a { + color: #888; +} + +p.caption { + font-family: inherit; + font-size: inherit; +} + + +div.relations { + display: none; +} + + +div.sphinxsidebar a { + color: #444; + text-decoration: none; + border-bottom: 1px dotted #999; +} + +div.sphinxsidebar a:hover { + border-bottom: 1px solid #999; +} + +div.sphinxsidebarwrapper { + padding: 18px 10px; +} + +div.sphinxsidebarwrapper p.logo { + padding: 0; + margin: -10px 0 0 0px; + text-align: center; +} + +div.sphinxsidebarwrapper h1.logo { + margin-top: -10px; + text-align: center; + margin-bottom: 5px; + text-align: left; +} + +div.sphinxsidebarwrapper h1.logo-name { + margin-top: 0px; +} + +div.sphinxsidebarwrapper p.blurb { + margin-top: 0; + font-style: normal; +} + +div.sphinxsidebar h3, +div.sphinxsidebar h4 { + font-family: 'Garamond', 'Georgia', serif; + color: #444; + font-size: 24px; + font-weight: normal; + margin: 0 0 5px 0; + padding: 0; +} + +div.sphinxsidebar h4 { + font-size: 20px; +} + +div.sphinxsidebar h3 a { + color: #444; +} + +div.sphinxsidebar p.logo a, +div.sphinxsidebar h3 a, +div.sphinxsidebar p.logo a:hover, +div.sphinxsidebar h3 a:hover { + border: none; +} + +div.sphinxsidebar p { + color: #555; + margin: 10px 0; +} + +div.sphinxsidebar ul { + margin: 10px 0; + padding: 0; + color: #000; +} + +div.sphinxsidebar ul li.toctree-l1 > a { + font-size: 120%; +} + +div.sphinxsidebar ul li.toctree-l2 > a { + font-size: 110%; +} + +div.sphinxsidebar input { + border: 1px solid #CCC; + font-family: 'goudy old style', 'minion pro', 'bell mt', Georgia, 'Hiragino Mincho Pro', serif; + font-size: 1em; +} + +div.sphinxsidebar hr { + border: none; + height: 1px; + color: #AAA; + background: #AAA; + + text-align: left; + margin-left: 0; + width: 50%; +} + +/* -- body styles ----------------------------------------------------------- */ + +a { + color: #004B6B; + text-decoration: underline; +} + +a:hover { + color: #6D4100; + text-decoration: underline; +} + +div.body h1, +div.body h2, +div.body h3, +div.body h4, +div.body h5, +div.body h6 { + font-family: 'Garamond', 'Georgia', serif; + font-weight: normal; + margin: 30px 0px 10px 0px; + padding: 0; +} + +div.body h1 { margin-top: 0; padding-top: 0; font-size: 240%; } +div.body h2 { font-size: 180%; } +div.body h3 { font-size: 150%; } +div.body h4 { font-size: 130%; } +div.body h5 { font-size: 100%; } +div.body h6 { font-size: 100%; } + +a.headerlink { + color: #DDD; + padding: 0 4px; + text-decoration: none; +} + +a.headerlink:hover { + color: #444; + background: #EAEAEA; +} + +div.body p, div.body dd, div.body li { + line-height: 1.4em; +} + +div.admonition { + margin: 20px 0px; + padding: 10px 30px; + background-color: #EEE; + border: 1px solid #CCC; +} + +div.admonition tt.xref, div.admonition code.xref, div.admonition a tt { + background-color: #FBFBFB; + border-bottom: 1px solid #fafafa; +} + +div.admonition p.admonition-title { + font-family: 'Garamond', 'Georgia', serif; + font-weight: normal; + font-size: 24px; + margin: 0 0 10px 0; + padding: 0; + line-height: 1; +} + +div.admonition p.last { + margin-bottom: 0; +} + +div.highlight { + background-color: #fff; +} + +dt:target, .highlight { + background: #FAF3E8; +} + +div.warning { + background-color: #FCC; + border: 1px solid #FAA; +} + +div.danger { + background-color: #FCC; + border: 1px solid #FAA; + -moz-box-shadow: 2px 2px 4px #D52C2C; + -webkit-box-shadow: 2px 2px 4px #D52C2C; + box-shadow: 2px 2px 4px #D52C2C; +} + +div.error { + background-color: #FCC; + border: 1px solid #FAA; + -moz-box-shadow: 2px 2px 4px #D52C2C; + -webkit-box-shadow: 2px 2px 4px #D52C2C; + box-shadow: 2px 2px 4px #D52C2C; +} + +div.caution { + background-color: #FCC; + border: 1px solid #FAA; +} + +div.attention { + background-color: #FCC; + border: 1px solid #FAA; +} + +div.important { + background-color: #EEE; + border: 1px solid #CCC; +} + +div.note { + background-color: #EEE; + border: 1px solid #CCC; +} + +div.tip { + background-color: #EEE; + border: 1px solid #CCC; +} + +div.hint { + background-color: #EEE; + border: 1px solid #CCC; +} + +div.seealso { + background-color: #EEE; + border: 1px solid #CCC; +} + +div.topic { + background-color: #EEE; +} + +p.admonition-title { + display: inline; +} + +p.admonition-title:after { + content: ":"; +} + +pre, tt, code { + font-family: 'Consolas', 'Menlo', 'Deja Vu Sans Mono', 'Bitstream Vera Sans Mono', monospace; + font-size: 0.9em; +} + +.hll { + background-color: #FFC; + margin: 0 -12px; + padding: 0 12px; + display: block; +} + +img.screenshot { +} + +tt.descname, tt.descclassname, code.descname, code.descclassname { + font-size: 0.95em; +} + +tt.descname, code.descname { + padding-right: 0.08em; +} + +img.screenshot { + -moz-box-shadow: 2px 2px 4px #EEE; + -webkit-box-shadow: 2px 2px 4px #EEE; + box-shadow: 2px 2px 4px #EEE; +} + +table.docutils { + border: 1px solid #888; + -moz-box-shadow: 2px 2px 4px #EEE; + -webkit-box-shadow: 2px 2px 4px #EEE; + box-shadow: 2px 2px 4px #EEE; +} + +table.docutils td, table.docutils th { + border: 1px solid #888; + padding: 0.25em 0.7em; +} + +table.field-list, table.footnote { + border: none; + -moz-box-shadow: none; + -webkit-box-shadow: none; + box-shadow: none; +} + +table.footnote { + margin: 15px 0; + width: 100%; + border: 1px solid #EEE; + background: #FDFDFD; + font-size: 0.9em; +} + +table.footnote + table.footnote { + margin-top: -15px; + border-top: none; +} + +table.field-list th { + padding: 0 0.8em 0 0; +} + +table.field-list td { + padding: 0; +} + +table.field-list p { + margin-bottom: 0.8em; +} + +/* Cloned from + * https://github.com/sphinx-doc/sphinx/commit/ef60dbfce09286b20b7385333d63a60321784e68 + */ +.field-name { + -moz-hyphens: manual; + -ms-hyphens: manual; + -webkit-hyphens: manual; + hyphens: manual; +} + +table.footnote td.label { + width: .1px; + padding: 0.3em 0 0.3em 0.5em; +} + +table.footnote td { + padding: 0.3em 0.5em; +} + +dl { + margin: 0; + padding: 0; +} + +dl dd { + margin-left: 30px; +} + +blockquote { + margin: 0 0 0 30px; + padding: 0; +} + +ul, ol { + /* Matches the 30px from the narrow-screen "li > ul" selector below */ + margin: 10px 0 10px 30px; + padding: 0; +} + +pre { + background: #EEE; + padding: 7px 30px; + margin: 15px 0px; + line-height: 1.3em; +} + +div.viewcode-block:target { + background: #ffd; +} + +dl pre, blockquote pre, li pre { + margin-left: 0; + padding-left: 30px; +} + +tt, code { + background-color: #ecf0f3; + color: #222; + /* padding: 1px 2px; */ +} + +tt.xref, code.xref, a tt { + background-color: #FBFBFB; + border-bottom: 1px solid #fff; +} + +a.reference { + text-decoration: none; + border-bottom: 1px dotted #004B6B; +} + +/* Don't put an underline on images */ +a.image-reference, a.image-reference:hover { + border-bottom: none; +} + +a.reference:hover { + border-bottom: 1px solid #6D4100; +} + +a.footnote-reference { + text-decoration: none; + font-size: 0.7em; + vertical-align: top; + border-bottom: 1px dotted #004B6B; +} + +a.footnote-reference:hover { + border-bottom: 1px solid #6D4100; +} + +a:hover tt, a:hover code { + background: #EEE; +} + + +@media screen and (max-width: 870px) { + + div.sphinxsidebar { + display: none; + } + + div.document { + width: 100%; + + } + + div.documentwrapper { + margin-left: 0; + margin-top: 0; + margin-right: 0; + margin-bottom: 0; + } + + div.bodywrapper { + margin-top: 0; + margin-right: 0; + margin-bottom: 0; + margin-left: 0; + } + + ul { + margin-left: 0; + } + + li > ul { + /* Matches the 30px from the "ul, ol" selector above */ + margin-left: 30px; + } + + .document { + width: auto; + } + + .footer { + width: auto; + } + + .bodywrapper { + margin: 0; + } + + .footer { + width: auto; + } + + .github { + display: none; + } + + + +} + + + +@media screen and (max-width: 875px) { + + body { + margin: 0; + padding: 20px 30px; + } + + div.documentwrapper { + float: none; + background: #fff; + } + + div.sphinxsidebar { + display: block; + float: none; + width: 102.5%; + margin: 50px -30px -20px -30px; + padding: 10px 20px; + background: #333; + color: #FFF; + } + + div.sphinxsidebar h3, div.sphinxsidebar h4, div.sphinxsidebar p, + div.sphinxsidebar h3 a { + color: #fff; + } + + div.sphinxsidebar a { + color: #AAA; + } + + div.sphinxsidebar p.logo { + display: none; + } + + div.document { + width: 100%; + margin: 0; + } + + div.footer { + display: none; + } + + div.bodywrapper { + margin: 0; + } + + div.body { + min-height: 0; + padding: 0; + } + + .rtd_doc_footer { + display: none; + } + + .document { + width: auto; + } + + .footer { + width: auto; + } + + .footer { + width: auto; + } + + .github { + display: none; + } +} + + +/* misc. */ + +.revsys-inline { + display: none!important; +} + +/* Make nested-list/multi-paragraph items look better in Releases changelog + * pages. Without this, docutils' magical list fuckery causes inconsistent + * formatting between different release sub-lists. + */ +div#changelog > div.section > ul > li > p:only-child { + margin-bottom: 0; +} + +/* Hide fugly table cell borders in ..bibliography:: directive output */ +table.docutils.citation, table.docutils.citation td, table.docutils.citation th { + border: none; + /* Below needed in some edge cases; if not applied, bottom shadows appear */ + -moz-box-shadow: none; + -webkit-box-shadow: none; + box-shadow: none; +} \ No newline at end of file diff --git a/docs/build/html/_static/basic.css b/docs/build/html/_static/basic.css new file mode 100644 index 0000000..9fa77d8 --- /dev/null +++ b/docs/build/html/_static/basic.css @@ -0,0 +1,599 @@ +/* + * basic.css + * ~~~~~~~~~ + * + * Sphinx stylesheet -- basic theme. + * + * :copyright: Copyright 2007-2015 by the Sphinx team, see AUTHORS. + * :license: BSD, see LICENSE for details. + * + */ + +/* -- main layout ----------------------------------------------------------- */ + +div.clearer { + clear: both; +} + +/* -- relbar ---------------------------------------------------------------- */ + +div.related { + width: 100%; + font-size: 90%; +} + +div.related h3 { + display: none; +} + +div.related ul { + margin: 0; + padding: 0 0 0 10px; + list-style: none; +} + +div.related li { + display: inline; +} + +div.related li.right { + float: right; + margin-right: 5px; +} + +/* -- sidebar --------------------------------------------------------------- */ + +div.sphinxsidebarwrapper { + padding: 10px 5px 0 10px; +} + +div.sphinxsidebar { + float: left; + width: 230px; + margin-left: -100%; + font-size: 90%; +} + +div.sphinxsidebar ul { + list-style: none; +} + +div.sphinxsidebar ul ul, +div.sphinxsidebar ul.want-points { + margin-left: 20px; + list-style: square; +} + +div.sphinxsidebar ul ul { + margin-top: 0; + margin-bottom: 0; +} + +div.sphinxsidebar form { + margin-top: 10px; +} + +div.sphinxsidebar input { + border: 1px solid #98dbcc; + font-family: sans-serif; + font-size: 1em; +} + +div.sphinxsidebar #searchbox input[type="text"] { + width: 170px; +} + +div.sphinxsidebar #searchbox input[type="submit"] { + width: 30px; +} + +img { + border: 0; + max-width: 100%; +} + +/* -- search page ----------------------------------------------------------- */ + +ul.search { + margin: 10px 0 0 20px; + padding: 0; +} + +ul.search li { + padding: 5px 0 5px 20px; + background-image: url(file.png); + background-repeat: no-repeat; + background-position: 0 7px; +} + +ul.search li a { + font-weight: bold; +} + +ul.search li div.context { + color: #888; + margin: 2px 0 0 30px; + text-align: left; +} + +ul.keywordmatches li.goodmatch a { + font-weight: bold; +} + +/* -- index page ------------------------------------------------------------ */ + +table.contentstable { + width: 90%; +} + +table.contentstable p.biglink { + line-height: 150%; +} + +a.biglink { + font-size: 1.3em; +} + +span.linkdescr { + font-style: italic; + padding-top: 5px; + font-size: 90%; +} + +/* -- general index --------------------------------------------------------- */ + +table.indextable { + width: 100%; +} + +table.indextable td { + text-align: left; + vertical-align: top; +} + +table.indextable dl, table.indextable dd { + margin-top: 0; + margin-bottom: 0; +} + +table.indextable tr.pcap { + height: 10px; +} + +table.indextable tr.cap { + margin-top: 10px; + background-color: #f2f2f2; +} + +img.toggler { + margin-right: 3px; + margin-top: 3px; + cursor: pointer; +} + +div.modindex-jumpbox { + border-top: 1px solid #ddd; + border-bottom: 1px solid #ddd; + margin: 1em 0 1em 0; + padding: 0.4em; +} + +div.genindex-jumpbox { + border-top: 1px solid #ddd; + border-bottom: 1px solid #ddd; + margin: 1em 0 1em 0; + padding: 0.4em; +} + +/* -- general body styles --------------------------------------------------- */ + +a.headerlink { + visibility: hidden; +} + +h1:hover > a.headerlink, +h2:hover > a.headerlink, +h3:hover > a.headerlink, +h4:hover > a.headerlink, +h5:hover > a.headerlink, +h6:hover > a.headerlink, +dt:hover > a.headerlink, +caption:hover > a.headerlink, +p.caption:hover > a.headerlink, +div.code-block-caption:hover > a.headerlink { + visibility: visible; +} + +div.body p.caption { + text-align: inherit; +} + +div.body td { + text-align: left; +} + +.field-list ul { + padding-left: 1em; +} + +.first { + margin-top: 0 !important; +} + +p.rubric { + margin-top: 30px; + font-weight: bold; +} + +img.align-left, .figure.align-left, object.align-left { + clear: left; + float: left; + margin-right: 1em; +} + +img.align-right, .figure.align-right, object.align-right { + clear: right; + float: right; + margin-left: 1em; +} + +img.align-center, .figure.align-center, object.align-center { + display: block; + margin-left: auto; + margin-right: auto; +} + +.align-left { + text-align: left; +} + +.align-center { + text-align: center; +} + +.align-right { + text-align: right; +} + +/* -- sidebars -------------------------------------------------------------- */ + +div.sidebar { + margin: 0 0 0.5em 1em; + border: 1px solid #ddb; + padding: 7px 7px 0 7px; + background-color: #ffe; + width: 40%; + float: right; +} + +p.sidebar-title { + font-weight: bold; +} + +/* -- topics ---------------------------------------------------------------- */ + +div.topic { + border: 1px solid #ccc; + padding: 7px 7px 0 7px; + margin: 10px 0 10px 0; +} + +p.topic-title { + font-size: 1.1em; + font-weight: bold; + margin-top: 10px; +} + +/* -- admonitions ----------------------------------------------------------- */ + +div.admonition { + margin-top: 10px; + margin-bottom: 10px; + padding: 7px; +} + +div.admonition dt { + font-weight: bold; +} + +div.admonition dl { + margin-bottom: 0; +} + +p.admonition-title { + margin: 0px 10px 5px 0px; + font-weight: bold; +} + +div.body p.centered { + text-align: center; + margin-top: 25px; +} + +/* -- tables ---------------------------------------------------------------- */ + +table.docutils { + border: 0; + border-collapse: collapse; +} + +table caption span.caption-number { + font-style: italic; +} + +table caption span.caption-text { +} + +table.docutils td, table.docutils th { + padding: 1px 8px 1px 5px; + border-top: 0; + border-left: 0; + border-right: 0; + border-bottom: 1px solid #aaa; +} + +table.field-list td, table.field-list th { + border: 0 !important; +} + +table.footnote td, table.footnote th { + border: 0 !important; +} + +th { + text-align: left; + padding-right: 5px; +} + +table.citation { + border-left: solid 1px gray; + margin-left: 1px; +} + +table.citation td { + border-bottom: none; +} + +/* -- figures --------------------------------------------------------------- */ + +div.figure { + margin: 0.5em; + padding: 0.5em; +} + +div.figure p.caption { + padding: 0.3em; +} + +div.figure p.caption span.caption-number { + font-style: italic; +} + +div.figure p.caption span.caption-text { +} + + +/* -- other body styles ----------------------------------------------------- */ + +ol.arabic { + list-style: decimal; +} + +ol.loweralpha { + list-style: lower-alpha; +} + +ol.upperalpha { + list-style: upper-alpha; +} + +ol.lowerroman { + list-style: lower-roman; +} + +ol.upperroman { + list-style: upper-roman; +} + +dl { + margin-bottom: 15px; +} + +dd p { + margin-top: 0px; +} + +dd ul, dd table { + margin-bottom: 10px; +} + +dd { + margin-top: 3px; + margin-bottom: 10px; + margin-left: 30px; +} + +dt:target, .highlighted { + background-color: #fbe54e; +} + +dl.glossary dt { + font-weight: bold; + font-size: 1.1em; +} + +.field-list ul { + margin: 0; + padding-left: 1em; +} + +.field-list p { + margin: 0; +} + +.optional { + font-size: 1.3em; +} + +.sig-paren { + font-size: larger; +} + +.versionmodified { + font-style: italic; +} + +.system-message { + background-color: #fda; + padding: 5px; + border: 3px solid red; +} + +.footnote:target { + background-color: #ffa; +} + +.line-block { + display: block; + margin-top: 1em; + margin-bottom: 1em; +} + +.line-block .line-block { + margin-top: 0; + margin-bottom: 0; + margin-left: 1.5em; +} + +.guilabel, .menuselection { + font-family: sans-serif; +} + +.accelerator { + text-decoration: underline; +} + +.classifier { + font-style: oblique; +} + +abbr, acronym { + border-bottom: dotted 1px; + cursor: help; +} + +/* -- code displays --------------------------------------------------------- */ + +pre { + overflow: auto; + overflow-y: hidden; /* fixes display issues on Chrome browsers */ +} + +td.linenos pre { + padding: 5px 0px; + border: 0; + background-color: transparent; + color: #aaa; +} + +table.highlighttable { + margin-left: 0.5em; +} + +table.highlighttable td { + padding: 0 0.5em 0 0.5em; +} + +div.code-block-caption { + padding: 2px 5px; + font-size: small; +} + +div.code-block-caption code { + background-color: transparent; +} + +div.code-block-caption + div > div.highlight > pre { + margin-top: 0; +} + +div.code-block-caption span.caption-number { + padding: 0.1em 0.3em; + font-style: italic; +} + +div.code-block-caption span.caption-text { +} + +div.literal-block-wrapper { + padding: 1em 1em 0; +} + +div.literal-block-wrapper div.highlight { + margin: 0; +} + +code.descname { + background-color: transparent; + font-weight: bold; + font-size: 1.2em; +} + +code.descclassname { + background-color: transparent; +} + +code.xref, a code { + background-color: transparent; + font-weight: bold; +} + +h1 code, h2 code, h3 code, h4 code, h5 code, h6 code { + background-color: transparent; +} + +.viewcode-link { + float: right; +} + +.viewcode-back { + float: right; + font-family: sans-serif; +} + +div.viewcode-block:target { + margin: -1px -10px; + padding: 0 10px; +} + +/* -- math display ---------------------------------------------------------- */ + +img.math { + vertical-align: middle; +} + +div.body div.math p { + text-align: center; +} + +span.eqno { + float: right; +} + +/* -- printout stylesheet --------------------------------------------------- */ + +@media print { + div.document, + div.documentwrapper, + div.bodywrapper { + margin: 0 !important; + width: 100%; + } + + div.sphinxsidebar, + div.related, + div.footer, + #top-link { + display: none; + } +} \ No newline at end of file diff --git a/docs/build/html/_static/comment-bright.png b/docs/build/html/_static/comment-bright.png new file mode 100644 index 0000000..551517b Binary files /dev/null and b/docs/build/html/_static/comment-bright.png differ diff --git a/docs/build/html/_static/comment-close.png b/docs/build/html/_static/comment-close.png new file mode 100644 index 0000000..09b54be Binary files /dev/null and b/docs/build/html/_static/comment-close.png differ diff --git a/docs/build/html/_static/comment.png b/docs/build/html/_static/comment.png new file mode 100644 index 0000000..92feb52 Binary files /dev/null and b/docs/build/html/_static/comment.png differ diff --git a/docs/build/html/_static/css/badge_only.css b/docs/build/html/_static/css/badge_only.css new file mode 100644 index 0000000..7e17fb1 --- /dev/null +++ b/docs/build/html/_static/css/badge_only.css @@ -0,0 +1,2 @@ +.fa:before{-webkit-font-smoothing:antialiased}.clearfix{*zoom:1}.clearfix:before,.clearfix:after{display:table;content:""}.clearfix:after{clear:both}@font-face{font-family:FontAwesome;font-weight:normal;font-style:normal;src:url("../font/fontawesome_webfont.eot");src:url("../font/fontawesome_webfont.eot?#iefix") format("embedded-opentype"),url("../font/fontawesome_webfont.woff") format("woff"),url("../font/fontawesome_webfont.ttf") format("truetype"),url("../font/fontawesome_webfont.svg#FontAwesome") format("svg")}.fa:before{display:inline-block;font-family:FontAwesome;font-style:normal;font-weight:normal;line-height:1;text-decoration:inherit}a .fa{display:inline-block;text-decoration:inherit}li .fa{display:inline-block}li .fa-large:before,li .fa-large:before{width:1.875em}ul.fas{list-style-type:none;margin-left:2em;text-indent:-0.8em}ul.fas li .fa{width:0.8em}ul.fas li .fa-large:before,ul.fas li .fa-large:before{vertical-align:baseline}.fa-book:before{content:""}.icon-book:before{content:""}.fa-caret-down:before{content:""}.icon-caret-down:before{content:""}.fa-caret-up:before{content:""}.icon-caret-up:before{content:""}.fa-caret-left:before{content:""}.icon-caret-left:before{content:""}.fa-caret-right:before{content:""}.icon-caret-right:before{content:""}.rst-versions{position:fixed;bottom:0;left:0;width:300px;color:#fcfcfc;background:#1f1d1d;border-top:solid 10px #343131;font-family:"Lato","proxima-nova","Helvetica Neue",Arial,sans-serif;z-index:400}.rst-versions a{color:#2980B9;text-decoration:none}.rst-versions .rst-badge-small{display:none}.rst-versions .rst-current-version{padding:12px;background-color:#272525;display:block;text-align:right;font-size:90%;cursor:pointer;color:#27AE60;*zoom:1}.rst-versions .rst-current-version:before,.rst-versions .rst-current-version:after{display:table;content:""}.rst-versions .rst-current-version:after{clear:both}.rst-versions .rst-current-version .fa{color:#fcfcfc}.rst-versions .rst-current-version .fa-book{float:left}.rst-versions .rst-current-version .icon-book{float:left}.rst-versions .rst-current-version.rst-out-of-date{background-color:#E74C3C;color:#fff}.rst-versions .rst-current-version.rst-active-old-version{background-color:#F1C40F;color:#000}.rst-versions.shift-up .rst-other-versions{display:block}.rst-versions .rst-other-versions{font-size:90%;padding:12px;color:gray;display:none}.rst-versions .rst-other-versions hr{display:block;height:1px;border:0;margin:20px 0;padding:0;border-top:solid 1px #413d3d}.rst-versions .rst-other-versions dd{display:inline-block;margin:0}.rst-versions .rst-other-versions dd a{display:inline-block;padding:6px;color:#fcfcfc}.rst-versions.rst-badge{width:auto;bottom:20px;right:20px;left:auto;border:none;max-width:300px}.rst-versions.rst-badge .icon-book{float:none}.rst-versions.rst-badge .fa-book{float:none}.rst-versions.rst-badge.shift-up .rst-current-version{text-align:right}.rst-versions.rst-badge.shift-up .rst-current-version .fa-book{float:left}.rst-versions.rst-badge.shift-up .rst-current-version .icon-book{float:left}.rst-versions.rst-badge .rst-current-version{width:auto;height:30px;line-height:30px;padding:0 6px;display:block;text-align:center}@media screen and (max-width: 768px){.rst-versions{width:85%;display:none}.rst-versions.shift{display:block}img{width:100%;height:auto}} +/*# sourceMappingURL=badge_only.css.map */ diff --git a/docs/build/html/_static/css/theme.css b/docs/build/html/_static/css/theme.css new file mode 100644 index 0000000..390d706 --- /dev/null +++ b/docs/build/html/_static/css/theme.css @@ -0,0 +1,5 @@ +*{-webkit-box-sizing:border-box;-moz-box-sizing:border-box;box-sizing:border-box}article,aside,details,figcaption,figure,footer,header,hgroup,nav,section{display:block}audio,canvas,video{display:inline-block;*display:inline;*zoom:1}audio:not([controls]){display:none}[hidden]{display:none}*{-webkit-box-sizing:border-box;-moz-box-sizing:border-box;box-sizing:border-box}html{font-size:100%;-webkit-text-size-adjust:100%;-ms-text-size-adjust:100%}body{margin:0}a:hover,a:active{outline:0}abbr[title]{border-bottom:1px dotted}b,strong{font-weight:bold}blockquote{margin:0}dfn{font-style:italic}ins{background:#ff9;color:#000;text-decoration:none}mark{background:#ff0;color:#000;font-style:italic;font-weight:bold}pre,code,.rst-content tt,kbd,samp{font-family:monospace,serif;_font-family:"courier new",monospace;font-size:1em}pre{white-space:pre}q{quotes:none}q:before,q:after{content:"";content:none}small{font-size:85%}sub,sup{font-size:75%;line-height:0;position:relative;vertical-align:baseline}sup{top:-0.5em}sub{bottom:-0.25em}ul,ol,dl{margin:0;padding:0;list-style:none;list-style-image:none}li{list-style:none}dd{margin:0}img{border:0;-ms-interpolation-mode:bicubic;vertical-align:middle;max-width:100%}svg:not(:root){overflow:hidden}figure{margin:0}form{margin:0}fieldset{border:0;margin:0;padding:0}label{cursor:pointer}legend{border:0;*margin-left:-7px;padding:0;white-space:normal}button,input,select,textarea{font-size:100%;margin:0;vertical-align:baseline;*vertical-align:middle}button,input{line-height:normal}button,input[type="button"],input[type="reset"],input[type="submit"]{cursor:pointer;-webkit-appearance:button;*overflow:visible}button[disabled],input[disabled]{cursor:default}input[type="checkbox"],input[type="radio"]{box-sizing:border-box;padding:0;*width:13px;*height:13px}input[type="search"]{-webkit-appearance:textfield;-moz-box-sizing:content-box;-webkit-box-sizing:content-box;box-sizing:content-box}input[type="search"]::-webkit-search-decoration,input[type="search"]::-webkit-search-cancel-button{-webkit-appearance:none}button::-moz-focus-inner,input::-moz-focus-inner{border:0;padding:0}textarea{overflow:auto;vertical-align:top;resize:vertical}table{border-collapse:collapse;border-spacing:0}td{vertical-align:top}.chromeframe{margin:0.2em 0;background:#ccc;color:#000;padding:0.2em 0}.ir{display:block;border:0;text-indent:-999em;overflow:hidden;background-color:transparent;background-repeat:no-repeat;text-align:left;direction:ltr;*line-height:0}.ir br{display:none}.hidden{display:none !important;visibility:hidden}.visuallyhidden{border:0;clip:rect(0 0 0 0);height:1px;margin:-1px;overflow:hidden;padding:0;position:absolute;width:1px}.visuallyhidden.focusable:active,.visuallyhidden.focusable:focus{clip:auto;height:auto;margin:0;overflow:visible;position:static;width:auto}.invisible{visibility:hidden}.relative{position:relative}big,small{font-size:100%}@media print{html,body,section{background:none !important}*{box-shadow:none !important;text-shadow:none !important;filter:none !important;-ms-filter:none !important}a,a:visited{text-decoration:underline}.ir a:after,a[href^="javascript:"]:after,a[href^="#"]:after{content:""}pre,blockquote{page-break-inside:avoid}thead{display:table-header-group}tr,img{page-break-inside:avoid}img{max-width:100% !important}@page{margin:0.5cm}p,h2,h3{orphans:3;widows:3}h2,h3{page-break-after:avoid}}.fa:before,.rst-content .admonition-title:before,.rst-content h1 .headerlink:before,.rst-content h2 .headerlink:before,.rst-content h3 .headerlink:before,.rst-content h4 .headerlink:before,.rst-content h5 .headerlink:before,.rst-content h6 .headerlink:before,.rst-content dl dt .headerlink:before,.icon:before,.wy-dropdown .caret:before,.wy-inline-validate.wy-inline-validate-success .wy-input-context:before,.wy-inline-validate.wy-inline-validate-danger .wy-input-context:before,.wy-inline-validate.wy-inline-validate-warning .wy-input-context:before,.wy-inline-validate.wy-inline-validate-info .wy-input-context:before,.wy-alert,.rst-content .note,.rst-content .attention,.rst-content .caution,.rst-content .danger,.rst-content .error,.rst-content .hint,.rst-content .important,.rst-content .tip,.rst-content .warning,.rst-content .seealso,.rst-content .admonition-todo,.btn,input[type="text"],input[type="password"],input[type="email"],input[type="url"],input[type="date"],input[type="month"],input[type="time"],input[type="datetime"],input[type="datetime-local"],input[type="week"],input[type="number"],input[type="search"],input[type="tel"],input[type="color"],select,textarea,.wy-menu-vertical li.on a,.wy-menu-vertical li.current>a,.wy-side-nav-search>a,.wy-side-nav-search .wy-dropdown>a,.wy-nav-top a{-webkit-font-smoothing:antialiased}.clearfix{*zoom:1}.clearfix:before,.clearfix:after{display:table;content:""}.clearfix:after{clear:both}/*! + * Font Awesome 4.2.0 by @davegandy - http://fontawesome.io - @fontawesome + * License - http://fontawesome.io/license (Font: SIL OFL 1.1, CSS: MIT License) + */@font-face{font-family:'FontAwesome';src:url("../fonts/fontawesome-webfont.eot?v=4.2.0");src:url("../fonts/fontawesome-webfont.eot?#iefix&v=4.2.0") format("embedded-opentype"),url("../fonts/fontawesome-webfont.woff?v=4.2.0") format("woff"),url("../fonts/fontawesome-webfont.ttf?v=4.2.0") format("truetype"),url("../fonts/fontawesome-webfont.svg?v=4.2.0#fontawesomeregular") format("svg");font-weight:normal;font-style:normal}.fa,.rst-content .admonition-title,.rst-content h1 .headerlink,.rst-content h2 .headerlink,.rst-content h3 .headerlink,.rst-content h4 .headerlink,.rst-content h5 .headerlink,.rst-content h6 .headerlink,.rst-content dl dt .headerlink,.icon{display:inline-block;font:normal normal normal 14px/1 FontAwesome;font-size:inherit;text-rendering:auto;-webkit-font-smoothing:antialiased;-moz-osx-font-smoothing:grayscale}.fa-lg{font-size:1.33333em;line-height:0.75em;vertical-align:-15%}.fa-2x{font-size:2em}.fa-3x{font-size:3em}.fa-4x{font-size:4em}.fa-5x{font-size:5em}.fa-fw{width:1.28571em;text-align:center}.fa-ul{padding-left:0;margin-left:2.14286em;list-style-type:none}.fa-ul>li{position:relative}.fa-li{position:absolute;left:-2.14286em;width:2.14286em;top:0.14286em;text-align:center}.fa-li.fa-lg{left:-1.85714em}.fa-border{padding:.2em .25em .15em;border:solid 0.08em #eee;border-radius:.1em}.pull-right{float:right}.pull-left{float:left}.fa.pull-left,.rst-content .pull-left.admonition-title,.rst-content h1 .pull-left.headerlink,.rst-content h2 .pull-left.headerlink,.rst-content h3 .pull-left.headerlink,.rst-content h4 .pull-left.headerlink,.rst-content h5 .pull-left.headerlink,.rst-content h6 .pull-left.headerlink,.rst-content dl dt .pull-left.headerlink,.pull-left.icon{margin-right:.3em}.fa.pull-right,.rst-content .pull-right.admonition-title,.rst-content h1 .pull-right.headerlink,.rst-content h2 .pull-right.headerlink,.rst-content h3 .pull-right.headerlink,.rst-content h4 .pull-right.headerlink,.rst-content h5 .pull-right.headerlink,.rst-content h6 .pull-right.headerlink,.rst-content dl dt .pull-right.headerlink,.pull-right.icon{margin-left:.3em}.fa-spin{-webkit-animation:fa-spin 2s infinite linear;animation:fa-spin 2s infinite linear}@-webkit-keyframes fa-spin{0%{-webkit-transform:rotate(0deg);transform:rotate(0deg)}100%{-webkit-transform:rotate(359deg);transform:rotate(359deg)}}@keyframes fa-spin{0%{-webkit-transform:rotate(0deg);transform:rotate(0deg)}100%{-webkit-transform:rotate(359deg);transform:rotate(359deg)}}.fa-rotate-90{filter:progid:DXImageTransform.Microsoft.BasicImage(rotation=1);-webkit-transform:rotate(90deg);-ms-transform:rotate(90deg);transform:rotate(90deg)}.fa-rotate-180{filter:progid:DXImageTransform.Microsoft.BasicImage(rotation=2);-webkit-transform:rotate(180deg);-ms-transform:rotate(180deg);transform:rotate(180deg)}.fa-rotate-270{filter:progid:DXImageTransform.Microsoft.BasicImage(rotation=3);-webkit-transform:rotate(270deg);-ms-transform:rotate(270deg);transform:rotate(270deg)}.fa-flip-horizontal{filter:progid:DXImageTransform.Microsoft.BasicImage(rotation=0);-webkit-transform:scale(-1, 1);-ms-transform:scale(-1, 1);transform:scale(-1, 1)}.fa-flip-vertical{filter:progid:DXImageTransform.Microsoft.BasicImage(rotation=2);-webkit-transform:scale(1, -1);-ms-transform:scale(1, -1);transform:scale(1, -1)}:root .fa-rotate-90,:root .fa-rotate-180,:root .fa-rotate-270,:root .fa-flip-horizontal,:root .fa-flip-vertical{filter:none}.fa-stack{position:relative;display:inline-block;width:2em;height:2em;line-height:2em;vertical-align:middle}.fa-stack-1x,.fa-stack-2x{position:absolute;left:0;width:100%;text-align:center}.fa-stack-1x{line-height:inherit}.fa-stack-2x{font-size:2em}.fa-inverse{color:#fff}.fa-glass:before{content:""}.fa-music:before{content:""}.fa-search:before,.icon-search:before{content:""}.fa-envelope-o:before{content:""}.fa-heart:before{content:""}.fa-star:before{content:""}.fa-star-o:before{content:""}.fa-user:before{content:""}.fa-film:before{content:""}.fa-th-large:before{content:""}.fa-th:before{content:""}.fa-th-list:before{content:""}.fa-check:before{content:""}.fa-remove:before,.fa-close:before,.fa-times:before{content:""}.fa-search-plus:before{content:""}.fa-search-minus:before{content:""}.fa-power-off:before{content:""}.fa-signal:before{content:""}.fa-gear:before,.fa-cog:before{content:""}.fa-trash-o:before{content:""}.fa-home:before,.icon-home:before{content:""}.fa-file-o:before{content:""}.fa-clock-o:before{content:""}.fa-road:before{content:""}.fa-download:before{content:""}.fa-arrow-circle-o-down:before{content:""}.fa-arrow-circle-o-up:before{content:""}.fa-inbox:before{content:""}.fa-play-circle-o:before{content:""}.fa-rotate-right:before,.fa-repeat:before{content:""}.fa-refresh:before{content:""}.fa-list-alt:before{content:""}.fa-lock:before{content:""}.fa-flag:before{content:""}.fa-headphones:before{content:""}.fa-volume-off:before{content:""}.fa-volume-down:before{content:""}.fa-volume-up:before{content:""}.fa-qrcode:before{content:""}.fa-barcode:before{content:""}.fa-tag:before{content:""}.fa-tags:before{content:""}.fa-book:before,.icon-book:before{content:""}.fa-bookmark:before{content:""}.fa-print:before{content:""}.fa-camera:before{content:""}.fa-font:before{content:""}.fa-bold:before{content:""}.fa-italic:before{content:""}.fa-text-height:before{content:""}.fa-text-width:before{content:""}.fa-align-left:before{content:""}.fa-align-center:before{content:""}.fa-align-right:before{content:""}.fa-align-justify:before{content:""}.fa-list:before{content:""}.fa-dedent:before,.fa-outdent:before{content:""}.fa-indent:before{content:""}.fa-video-camera:before{content:""}.fa-photo:before,.fa-image:before,.fa-picture-o:before{content:""}.fa-pencil:before{content:""}.fa-map-marker:before{content:""}.fa-adjust:before{content:""}.fa-tint:before{content:""}.fa-edit:before,.fa-pencil-square-o:before{content:""}.fa-share-square-o:before{content:""}.fa-check-square-o:before{content:""}.fa-arrows:before{content:""}.fa-step-backward:before{content:""}.fa-fast-backward:before{content:""}.fa-backward:before{content:""}.fa-play:before{content:""}.fa-pause:before{content:""}.fa-stop:before{content:""}.fa-forward:before{content:""}.fa-fast-forward:before{content:""}.fa-step-forward:before{content:""}.fa-eject:before{content:""}.fa-chevron-left:before{content:""}.fa-chevron-right:before{content:""}.fa-plus-circle:before{content:""}.fa-minus-circle:before{content:""}.fa-times-circle:before,.wy-inline-validate.wy-inline-validate-danger .wy-input-context:before{content:""}.fa-check-circle:before,.wy-inline-validate.wy-inline-validate-success .wy-input-context:before{content:""}.fa-question-circle:before{content:""}.fa-info-circle:before{content:""}.fa-crosshairs:before{content:""}.fa-times-circle-o:before{content:""}.fa-check-circle-o:before{content:""}.fa-ban:before{content:""}.fa-arrow-left:before{content:""}.fa-arrow-right:before{content:""}.fa-arrow-up:before{content:""}.fa-arrow-down:before{content:""}.fa-mail-forward:before,.fa-share:before{content:""}.fa-expand:before{content:""}.fa-compress:before{content:""}.fa-plus:before{content:""}.fa-minus:before{content:""}.fa-asterisk:before{content:""}.fa-exclamation-circle:before,.wy-inline-validate.wy-inline-validate-warning .wy-input-context:before,.wy-inline-validate.wy-inline-validate-info .wy-input-context:before,.rst-content .admonition-title:before{content:""}.fa-gift:before{content:""}.fa-leaf:before{content:""}.fa-fire:before,.icon-fire:before{content:""}.fa-eye:before{content:""}.fa-eye-slash:before{content:""}.fa-warning:before,.fa-exclamation-triangle:before{content:""}.fa-plane:before{content:""}.fa-calendar:before{content:""}.fa-random:before{content:""}.fa-comment:before{content:""}.fa-magnet:before{content:""}.fa-chevron-up:before{content:""}.fa-chevron-down:before{content:""}.fa-retweet:before{content:""}.fa-shopping-cart:before{content:""}.fa-folder:before{content:""}.fa-folder-open:before{content:""}.fa-arrows-v:before{content:""}.fa-arrows-h:before{content:""}.fa-bar-chart-o:before,.fa-bar-chart:before{content:""}.fa-twitter-square:before{content:""}.fa-facebook-square:before{content:""}.fa-camera-retro:before{content:""}.fa-key:before{content:""}.fa-gears:before,.fa-cogs:before{content:""}.fa-comments:before{content:""}.fa-thumbs-o-up:before{content:""}.fa-thumbs-o-down:before{content:""}.fa-star-half:before{content:""}.fa-heart-o:before{content:""}.fa-sign-out:before{content:""}.fa-linkedin-square:before{content:""}.fa-thumb-tack:before{content:""}.fa-external-link:before{content:""}.fa-sign-in:before{content:""}.fa-trophy:before{content:""}.fa-github-square:before{content:""}.fa-upload:before{content:""}.fa-lemon-o:before{content:""}.fa-phone:before{content:""}.fa-square-o:before{content:""}.fa-bookmark-o:before{content:""}.fa-phone-square:before{content:""}.fa-twitter:before{content:""}.fa-facebook:before{content:""}.fa-github:before,.icon-github:before{content:""}.fa-unlock:before{content:""}.fa-credit-card:before{content:""}.fa-rss:before{content:""}.fa-hdd-o:before{content:""}.fa-bullhorn:before{content:""}.fa-bell:before{content:""}.fa-certificate:before{content:""}.fa-hand-o-right:before{content:""}.fa-hand-o-left:before{content:""}.fa-hand-o-up:before{content:""}.fa-hand-o-down:before{content:""}.fa-arrow-circle-left:before,.icon-circle-arrow-left:before{content:""}.fa-arrow-circle-right:before,.icon-circle-arrow-right:before{content:""}.fa-arrow-circle-up:before{content:""}.fa-arrow-circle-down:before{content:""}.fa-globe:before{content:""}.fa-wrench:before{content:""}.fa-tasks:before{content:""}.fa-filter:before{content:""}.fa-briefcase:before{content:""}.fa-arrows-alt:before{content:""}.fa-group:before,.fa-users:before{content:""}.fa-chain:before,.fa-link:before,.icon-link:before{content:""}.fa-cloud:before{content:""}.fa-flask:before{content:""}.fa-cut:before,.fa-scissors:before{content:""}.fa-copy:before,.fa-files-o:before{content:""}.fa-paperclip:before{content:""}.fa-save:before,.fa-floppy-o:before{content:""}.fa-square:before{content:""}.fa-navicon:before,.fa-reorder:before,.fa-bars:before{content:""}.fa-list-ul:before{content:""}.fa-list-ol:before{content:""}.fa-strikethrough:before{content:""}.fa-underline:before{content:""}.fa-table:before{content:""}.fa-magic:before{content:""}.fa-truck:before{content:""}.fa-pinterest:before{content:""}.fa-pinterest-square:before{content:""}.fa-google-plus-square:before{content:""}.fa-google-plus:before{content:""}.fa-money:before{content:""}.fa-caret-down:before,.wy-dropdown .caret:before,.icon-caret-down:before{content:""}.fa-caret-up:before{content:""}.fa-caret-left:before{content:""}.fa-caret-right:before{content:""}.fa-columns:before{content:""}.fa-unsorted:before,.fa-sort:before{content:""}.fa-sort-down:before,.fa-sort-desc:before{content:""}.fa-sort-up:before,.fa-sort-asc:before{content:""}.fa-envelope:before{content:""}.fa-linkedin:before{content:""}.fa-rotate-left:before,.fa-undo:before{content:""}.fa-legal:before,.fa-gavel:before{content:""}.fa-dashboard:before,.fa-tachometer:before{content:""}.fa-comment-o:before{content:""}.fa-comments-o:before{content:""}.fa-flash:before,.fa-bolt:before{content:""}.fa-sitemap:before{content:""}.fa-umbrella:before{content:""}.fa-paste:before,.fa-clipboard:before{content:""}.fa-lightbulb-o:before{content:""}.fa-exchange:before{content:""}.fa-cloud-download:before{content:""}.fa-cloud-upload:before{content:""}.fa-user-md:before{content:""}.fa-stethoscope:before{content:""}.fa-suitcase:before{content:""}.fa-bell-o:before{content:""}.fa-coffee:before{content:""}.fa-cutlery:before{content:""}.fa-file-text-o:before{content:""}.fa-building-o:before{content:""}.fa-hospital-o:before{content:""}.fa-ambulance:before{content:""}.fa-medkit:before{content:""}.fa-fighter-jet:before{content:""}.fa-beer:before{content:""}.fa-h-square:before{content:""}.fa-plus-square:before{content:""}.fa-angle-double-left:before{content:""}.fa-angle-double-right:before{content:""}.fa-angle-double-up:before{content:""}.fa-angle-double-down:before{content:""}.fa-angle-left:before{content:""}.fa-angle-right:before{content:""}.fa-angle-up:before{content:""}.fa-angle-down:before{content:""}.fa-desktop:before{content:""}.fa-laptop:before{content:""}.fa-tablet:before{content:""}.fa-mobile-phone:before,.fa-mobile:before{content:""}.fa-circle-o:before{content:""}.fa-quote-left:before{content:""}.fa-quote-right:before{content:""}.fa-spinner:before{content:""}.fa-circle:before{content:""}.fa-mail-reply:before,.fa-reply:before{content:""}.fa-github-alt:before{content:""}.fa-folder-o:before{content:""}.fa-folder-open-o:before{content:""}.fa-smile-o:before{content:""}.fa-frown-o:before{content:""}.fa-meh-o:before{content:""}.fa-gamepad:before{content:""}.fa-keyboard-o:before{content:""}.fa-flag-o:before{content:""}.fa-flag-checkered:before{content:""}.fa-terminal:before{content:""}.fa-code:before{content:""}.fa-mail-reply-all:before,.fa-reply-all:before{content:""}.fa-star-half-empty:before,.fa-star-half-full:before,.fa-star-half-o:before{content:""}.fa-location-arrow:before{content:""}.fa-crop:before{content:""}.fa-code-fork:before{content:""}.fa-unlink:before,.fa-chain-broken:before{content:""}.fa-question:before{content:""}.fa-info:before{content:""}.fa-exclamation:before{content:""}.fa-superscript:before{content:""}.fa-subscript:before{content:""}.fa-eraser:before{content:""}.fa-puzzle-piece:before{content:""}.fa-microphone:before{content:""}.fa-microphone-slash:before{content:""}.fa-shield:before{content:""}.fa-calendar-o:before{content:""}.fa-fire-extinguisher:before{content:""}.fa-rocket:before{content:""}.fa-maxcdn:before{content:""}.fa-chevron-circle-left:before{content:""}.fa-chevron-circle-right:before{content:""}.fa-chevron-circle-up:before{content:""}.fa-chevron-circle-down:before{content:""}.fa-html5:before{content:""}.fa-css3:before{content:""}.fa-anchor:before{content:""}.fa-unlock-alt:before{content:""}.fa-bullseye:before{content:""}.fa-ellipsis-h:before{content:""}.fa-ellipsis-v:before{content:""}.fa-rss-square:before{content:""}.fa-play-circle:before{content:""}.fa-ticket:before{content:""}.fa-minus-square:before{content:""}.fa-minus-square-o:before{content:""}.fa-level-up:before{content:""}.fa-level-down:before{content:""}.fa-check-square:before{content:""}.fa-pencil-square:before{content:""}.fa-external-link-square:before{content:""}.fa-share-square:before{content:""}.fa-compass:before{content:""}.fa-toggle-down:before,.fa-caret-square-o-down:before{content:""}.fa-toggle-up:before,.fa-caret-square-o-up:before{content:""}.fa-toggle-right:before,.fa-caret-square-o-right:before{content:""}.fa-euro:before,.fa-eur:before{content:""}.fa-gbp:before{content:""}.fa-dollar:before,.fa-usd:before{content:""}.fa-rupee:before,.fa-inr:before{content:""}.fa-cny:before,.fa-rmb:before,.fa-yen:before,.fa-jpy:before{content:""}.fa-ruble:before,.fa-rouble:before,.fa-rub:before{content:""}.fa-won:before,.fa-krw:before{content:""}.fa-bitcoin:before,.fa-btc:before{content:""}.fa-file:before{content:""}.fa-file-text:before{content:""}.fa-sort-alpha-asc:before{content:""}.fa-sort-alpha-desc:before{content:""}.fa-sort-amount-asc:before{content:""}.fa-sort-amount-desc:before{content:""}.fa-sort-numeric-asc:before{content:""}.fa-sort-numeric-desc:before{content:""}.fa-thumbs-up:before{content:""}.fa-thumbs-down:before{content:""}.fa-youtube-square:before{content:""}.fa-youtube:before{content:""}.fa-xing:before{content:""}.fa-xing-square:before{content:""}.fa-youtube-play:before{content:""}.fa-dropbox:before{content:""}.fa-stack-overflow:before{content:""}.fa-instagram:before{content:""}.fa-flickr:before{content:""}.fa-adn:before{content:""}.fa-bitbucket:before,.icon-bitbucket:before{content:""}.fa-bitbucket-square:before{content:""}.fa-tumblr:before{content:""}.fa-tumblr-square:before{content:""}.fa-long-arrow-down:before{content:""}.fa-long-arrow-up:before{content:""}.fa-long-arrow-left:before{content:""}.fa-long-arrow-right:before{content:""}.fa-apple:before{content:""}.fa-windows:before{content:""}.fa-android:before{content:""}.fa-linux:before{content:""}.fa-dribbble:before{content:""}.fa-skype:before{content:""}.fa-foursquare:before{content:""}.fa-trello:before{content:""}.fa-female:before{content:""}.fa-male:before{content:""}.fa-gittip:before{content:""}.fa-sun-o:before{content:""}.fa-moon-o:before{content:""}.fa-archive:before{content:""}.fa-bug:before{content:""}.fa-vk:before{content:""}.fa-weibo:before{content:""}.fa-renren:before{content:""}.fa-pagelines:before{content:""}.fa-stack-exchange:before{content:""}.fa-arrow-circle-o-right:before{content:""}.fa-arrow-circle-o-left:before{content:""}.fa-toggle-left:before,.fa-caret-square-o-left:before{content:""}.fa-dot-circle-o:before{content:""}.fa-wheelchair:before{content:""}.fa-vimeo-square:before{content:""}.fa-turkish-lira:before,.fa-try:before{content:""}.fa-plus-square-o:before{content:""}.fa-space-shuttle:before{content:""}.fa-slack:before{content:""}.fa-envelope-square:before{content:""}.fa-wordpress:before{content:""}.fa-openid:before{content:""}.fa-institution:before,.fa-bank:before,.fa-university:before{content:""}.fa-mortar-board:before,.fa-graduation-cap:before{content:""}.fa-yahoo:before{content:""}.fa-google:before{content:""}.fa-reddit:before{content:""}.fa-reddit-square:before{content:""}.fa-stumbleupon-circle:before{content:""}.fa-stumbleupon:before{content:""}.fa-delicious:before{content:""}.fa-digg:before{content:""}.fa-pied-piper:before{content:""}.fa-pied-piper-alt:before{content:""}.fa-drupal:before{content:""}.fa-joomla:before{content:""}.fa-language:before{content:""}.fa-fax:before{content:""}.fa-building:before{content:""}.fa-child:before{content:""}.fa-paw:before{content:""}.fa-spoon:before{content:""}.fa-cube:before{content:""}.fa-cubes:before{content:""}.fa-behance:before{content:""}.fa-behance-square:before{content:""}.fa-steam:before{content:""}.fa-steam-square:before{content:""}.fa-recycle:before{content:""}.fa-automobile:before,.fa-car:before{content:""}.fa-cab:before,.fa-taxi:before{content:""}.fa-tree:before{content:""}.fa-spotify:before{content:""}.fa-deviantart:before{content:""}.fa-soundcloud:before{content:""}.fa-database:before{content:""}.fa-file-pdf-o:before{content:""}.fa-file-word-o:before{content:""}.fa-file-excel-o:before{content:""}.fa-file-powerpoint-o:before{content:""}.fa-file-photo-o:before,.fa-file-picture-o:before,.fa-file-image-o:before{content:""}.fa-file-zip-o:before,.fa-file-archive-o:before{content:""}.fa-file-sound-o:before,.fa-file-audio-o:before{content:""}.fa-file-movie-o:before,.fa-file-video-o:before{content:""}.fa-file-code-o:before{content:""}.fa-vine:before{content:""}.fa-codepen:before{content:""}.fa-jsfiddle:before{content:""}.fa-life-bouy:before,.fa-life-buoy:before,.fa-life-saver:before,.fa-support:before,.fa-life-ring:before{content:""}.fa-circle-o-notch:before{content:""}.fa-ra:before,.fa-rebel:before{content:""}.fa-ge:before,.fa-empire:before{content:""}.fa-git-square:before{content:""}.fa-git:before{content:""}.fa-hacker-news:before{content:""}.fa-tencent-weibo:before{content:""}.fa-qq:before{content:""}.fa-wechat:before,.fa-weixin:before{content:""}.fa-send:before,.fa-paper-plane:before{content:""}.fa-send-o:before,.fa-paper-plane-o:before{content:""}.fa-history:before{content:""}.fa-circle-thin:before{content:""}.fa-header:before{content:""}.fa-paragraph:before{content:""}.fa-sliders:before{content:""}.fa-share-alt:before{content:""}.fa-share-alt-square:before{content:""}.fa-bomb:before{content:""}.fa-soccer-ball-o:before,.fa-futbol-o:before{content:""}.fa-tty:before{content:""}.fa-binoculars:before{content:""}.fa-plug:before{content:""}.fa-slideshare:before{content:""}.fa-twitch:before{content:""}.fa-yelp:before{content:""}.fa-newspaper-o:before{content:""}.fa-wifi:before{content:""}.fa-calculator:before{content:""}.fa-paypal:before{content:""}.fa-google-wallet:before{content:""}.fa-cc-visa:before{content:""}.fa-cc-mastercard:before{content:""}.fa-cc-discover:before{content:""}.fa-cc-amex:before{content:""}.fa-cc-paypal:before{content:""}.fa-cc-stripe:before{content:""}.fa-bell-slash:before{content:""}.fa-bell-slash-o:before{content:""}.fa-trash:before{content:""}.fa-copyright:before{content:""}.fa-at:before{content:""}.fa-eyedropper:before{content:""}.fa-paint-brush:before{content:""}.fa-birthday-cake:before{content:""}.fa-area-chart:before{content:""}.fa-pie-chart:before{content:""}.fa-line-chart:before{content:""}.fa-lastfm:before{content:""}.fa-lastfm-square:before{content:""}.fa-toggle-off:before{content:""}.fa-toggle-on:before{content:""}.fa-bicycle:before{content:""}.fa-bus:before{content:""}.fa-ioxhost:before{content:""}.fa-angellist:before{content:""}.fa-cc:before{content:""}.fa-shekel:before,.fa-sheqel:before,.fa-ils:before{content:""}.fa-meanpath:before{content:""}.fa,.rst-content .admonition-title,.rst-content h1 .headerlink,.rst-content h2 .headerlink,.rst-content h3 .headerlink,.rst-content h4 .headerlink,.rst-content h5 .headerlink,.rst-content h6 .headerlink,.rst-content dl dt .headerlink,.icon,.wy-dropdown .caret,.wy-inline-validate.wy-inline-validate-success .wy-input-context,.wy-inline-validate.wy-inline-validate-danger .wy-input-context,.wy-inline-validate.wy-inline-validate-warning .wy-input-context,.wy-inline-validate.wy-inline-validate-info .wy-input-context{font-family:inherit}.fa:before,.rst-content .admonition-title:before,.rst-content h1 .headerlink:before,.rst-content h2 .headerlink:before,.rst-content h3 .headerlink:before,.rst-content h4 .headerlink:before,.rst-content h5 .headerlink:before,.rst-content h6 .headerlink:before,.rst-content dl dt .headerlink:before,.icon:before,.wy-dropdown .caret:before,.wy-inline-validate.wy-inline-validate-success .wy-input-context:before,.wy-inline-validate.wy-inline-validate-danger .wy-input-context:before,.wy-inline-validate.wy-inline-validate-warning .wy-input-context:before,.wy-inline-validate.wy-inline-validate-info .wy-input-context:before{font-family:"FontAwesome";display:inline-block;font-style:normal;font-weight:normal;line-height:1;text-decoration:inherit}a .fa,a .rst-content .admonition-title,.rst-content a .admonition-title,a .rst-content h1 .headerlink,.rst-content h1 a .headerlink,a .rst-content h2 .headerlink,.rst-content h2 a .headerlink,a .rst-content h3 .headerlink,.rst-content h3 a .headerlink,a .rst-content h4 .headerlink,.rst-content h4 a .headerlink,a .rst-content h5 .headerlink,.rst-content h5 a .headerlink,a .rst-content h6 .headerlink,.rst-content h6 a .headerlink,a .rst-content dl dt .headerlink,.rst-content dl dt a .headerlink,a .icon{display:inline-block;text-decoration:inherit}.btn .fa,.btn .rst-content .admonition-title,.rst-content .btn .admonition-title,.btn .rst-content h1 .headerlink,.rst-content h1 .btn .headerlink,.btn .rst-content h2 .headerlink,.rst-content h2 .btn .headerlink,.btn .rst-content h3 .headerlink,.rst-content h3 .btn .headerlink,.btn .rst-content h4 .headerlink,.rst-content h4 .btn .headerlink,.btn .rst-content h5 .headerlink,.rst-content h5 .btn .headerlink,.btn .rst-content h6 .headerlink,.rst-content h6 .btn .headerlink,.btn .rst-content dl dt .headerlink,.rst-content dl dt .btn .headerlink,.btn .icon,.nav .fa,.nav .rst-content .admonition-title,.rst-content .nav .admonition-title,.nav .rst-content h1 .headerlink,.rst-content h1 .nav .headerlink,.nav .rst-content h2 .headerlink,.rst-content h2 .nav .headerlink,.nav .rst-content h3 .headerlink,.rst-content h3 .nav .headerlink,.nav .rst-content h4 .headerlink,.rst-content h4 .nav .headerlink,.nav .rst-content h5 .headerlink,.rst-content h5 .nav .headerlink,.nav .rst-content h6 .headerlink,.rst-content h6 .nav .headerlink,.nav .rst-content dl dt .headerlink,.rst-content dl dt .nav .headerlink,.nav .icon{display:inline}.btn .fa.fa-large,.btn .rst-content .fa-large.admonition-title,.rst-content .btn .fa-large.admonition-title,.btn .rst-content h1 .fa-large.headerlink,.rst-content h1 .btn .fa-large.headerlink,.btn .rst-content h2 .fa-large.headerlink,.rst-content h2 .btn .fa-large.headerlink,.btn .rst-content h3 .fa-large.headerlink,.rst-content h3 .btn .fa-large.headerlink,.btn .rst-content h4 .fa-large.headerlink,.rst-content h4 .btn .fa-large.headerlink,.btn .rst-content h5 .fa-large.headerlink,.rst-content h5 .btn .fa-large.headerlink,.btn .rst-content h6 .fa-large.headerlink,.rst-content h6 .btn .fa-large.headerlink,.btn .rst-content dl dt .fa-large.headerlink,.rst-content dl dt .btn .fa-large.headerlink,.btn .fa-large.icon,.nav .fa.fa-large,.nav .rst-content .fa-large.admonition-title,.rst-content .nav .fa-large.admonition-title,.nav .rst-content h1 .fa-large.headerlink,.rst-content h1 .nav .fa-large.headerlink,.nav .rst-content h2 .fa-large.headerlink,.rst-content h2 .nav .fa-large.headerlink,.nav .rst-content h3 .fa-large.headerlink,.rst-content h3 .nav .fa-large.headerlink,.nav .rst-content h4 .fa-large.headerlink,.rst-content h4 .nav .fa-large.headerlink,.nav .rst-content h5 .fa-large.headerlink,.rst-content h5 .nav .fa-large.headerlink,.nav .rst-content h6 .fa-large.headerlink,.rst-content h6 .nav .fa-large.headerlink,.nav .rst-content dl dt .fa-large.headerlink,.rst-content dl dt .nav .fa-large.headerlink,.nav .fa-large.icon{line-height:0.9em}.btn .fa.fa-spin,.btn .rst-content .fa-spin.admonition-title,.rst-content .btn .fa-spin.admonition-title,.btn .rst-content h1 .fa-spin.headerlink,.rst-content h1 .btn .fa-spin.headerlink,.btn .rst-content h2 .fa-spin.headerlink,.rst-content h2 .btn .fa-spin.headerlink,.btn .rst-content h3 .fa-spin.headerlink,.rst-content h3 .btn .fa-spin.headerlink,.btn .rst-content h4 .fa-spin.headerlink,.rst-content h4 .btn .fa-spin.headerlink,.btn .rst-content h5 .fa-spin.headerlink,.rst-content h5 .btn .fa-spin.headerlink,.btn .rst-content h6 .fa-spin.headerlink,.rst-content h6 .btn .fa-spin.headerlink,.btn .rst-content dl dt .fa-spin.headerlink,.rst-content dl dt .btn .fa-spin.headerlink,.btn .fa-spin.icon,.nav .fa.fa-spin,.nav .rst-content .fa-spin.admonition-title,.rst-content .nav .fa-spin.admonition-title,.nav .rst-content h1 .fa-spin.headerlink,.rst-content h1 .nav .fa-spin.headerlink,.nav .rst-content h2 .fa-spin.headerlink,.rst-content h2 .nav .fa-spin.headerlink,.nav .rst-content h3 .fa-spin.headerlink,.rst-content h3 .nav .fa-spin.headerlink,.nav .rst-content h4 .fa-spin.headerlink,.rst-content h4 .nav .fa-spin.headerlink,.nav .rst-content h5 .fa-spin.headerlink,.rst-content h5 .nav .fa-spin.headerlink,.nav .rst-content h6 .fa-spin.headerlink,.rst-content h6 .nav .fa-spin.headerlink,.nav .rst-content dl dt .fa-spin.headerlink,.rst-content dl dt .nav .fa-spin.headerlink,.nav .fa-spin.icon{display:inline-block}.btn.fa:before,.rst-content .btn.admonition-title:before,.rst-content h1 .btn.headerlink:before,.rst-content h2 .btn.headerlink:before,.rst-content h3 .btn.headerlink:before,.rst-content h4 .btn.headerlink:before,.rst-content h5 .btn.headerlink:before,.rst-content h6 .btn.headerlink:before,.rst-content dl dt .btn.headerlink:before,.btn.icon:before{opacity:0.5;-webkit-transition:opacity 0.05s ease-in;-moz-transition:opacity 0.05s ease-in;transition:opacity 0.05s ease-in}.btn.fa:hover:before,.rst-content .btn.admonition-title:hover:before,.rst-content h1 .btn.headerlink:hover:before,.rst-content h2 .btn.headerlink:hover:before,.rst-content h3 .btn.headerlink:hover:before,.rst-content h4 .btn.headerlink:hover:before,.rst-content h5 .btn.headerlink:hover:before,.rst-content h6 .btn.headerlink:hover:before,.rst-content dl dt .btn.headerlink:hover:before,.btn.icon:hover:before{opacity:1}.btn-mini .fa:before,.btn-mini .rst-content .admonition-title:before,.rst-content .btn-mini .admonition-title:before,.btn-mini .rst-content h1 .headerlink:before,.rst-content h1 .btn-mini .headerlink:before,.btn-mini .rst-content h2 .headerlink:before,.rst-content h2 .btn-mini .headerlink:before,.btn-mini .rst-content h3 .headerlink:before,.rst-content h3 .btn-mini .headerlink:before,.btn-mini .rst-content h4 .headerlink:before,.rst-content h4 .btn-mini .headerlink:before,.btn-mini .rst-content h5 .headerlink:before,.rst-content h5 .btn-mini .headerlink:before,.btn-mini .rst-content h6 .headerlink:before,.rst-content h6 .btn-mini .headerlink:before,.btn-mini .rst-content dl dt .headerlink:before,.rst-content dl dt .btn-mini .headerlink:before,.btn-mini .icon:before{font-size:14px;vertical-align:-15%}.wy-alert,.rst-content .note,.rst-content .attention,.rst-content .caution,.rst-content .danger,.rst-content .error,.rst-content .hint,.rst-content .important,.rst-content .tip,.rst-content .warning,.rst-content .seealso,.rst-content .admonition-todo{padding:12px;line-height:24px;margin-bottom:24px;background:#e7f2fa}.wy-alert-title,.rst-content .admonition-title{color:#fff;font-weight:bold;display:block;color:#fff;background:#6ab0de;margin:-12px;padding:6px 12px;margin-bottom:12px}.wy-alert.wy-alert-danger,.rst-content .wy-alert-danger.note,.rst-content .wy-alert-danger.attention,.rst-content .wy-alert-danger.caution,.rst-content .danger,.rst-content .error,.rst-content .wy-alert-danger.hint,.rst-content .wy-alert-danger.important,.rst-content .wy-alert-danger.tip,.rst-content .wy-alert-danger.warning,.rst-content .wy-alert-danger.seealso,.rst-content .wy-alert-danger.admonition-todo{background:#fdf3f2}.wy-alert.wy-alert-danger .wy-alert-title,.rst-content .wy-alert-danger.note .wy-alert-title,.rst-content .wy-alert-danger.attention .wy-alert-title,.rst-content .wy-alert-danger.caution .wy-alert-title,.rst-content .danger .wy-alert-title,.rst-content .error .wy-alert-title,.rst-content .wy-alert-danger.hint .wy-alert-title,.rst-content .wy-alert-danger.important .wy-alert-title,.rst-content .wy-alert-danger.tip .wy-alert-title,.rst-content .wy-alert-danger.warning .wy-alert-title,.rst-content .wy-alert-danger.seealso .wy-alert-title,.rst-content .wy-alert-danger.admonition-todo .wy-alert-title,.wy-alert.wy-alert-danger .rst-content .admonition-title,.rst-content .wy-alert.wy-alert-danger .admonition-title,.rst-content .wy-alert-danger.note .admonition-title,.rst-content .wy-alert-danger.attention .admonition-title,.rst-content .wy-alert-danger.caution .admonition-title,.rst-content .danger .admonition-title,.rst-content .error .admonition-title,.rst-content .wy-alert-danger.hint .admonition-title,.rst-content .wy-alert-danger.important .admonition-title,.rst-content .wy-alert-danger.tip .admonition-title,.rst-content .wy-alert-danger.warning .admonition-title,.rst-content .wy-alert-danger.seealso .admonition-title,.rst-content .wy-alert-danger.admonition-todo .admonition-title{background:#f29f97}.wy-alert.wy-alert-warning,.rst-content .wy-alert-warning.note,.rst-content .attention,.rst-content .caution,.rst-content .wy-alert-warning.danger,.rst-content .wy-alert-warning.error,.rst-content .wy-alert-warning.hint,.rst-content .wy-alert-warning.important,.rst-content .wy-alert-warning.tip,.rst-content .warning,.rst-content .wy-alert-warning.seealso,.rst-content .admonition-todo{background:#ffedcc}.wy-alert.wy-alert-warning .wy-alert-title,.rst-content .wy-alert-warning.note .wy-alert-title,.rst-content .attention .wy-alert-title,.rst-content .caution .wy-alert-title,.rst-content .wy-alert-warning.danger .wy-alert-title,.rst-content .wy-alert-warning.error .wy-alert-title,.rst-content .wy-alert-warning.hint .wy-alert-title,.rst-content .wy-alert-warning.important .wy-alert-title,.rst-content .wy-alert-warning.tip .wy-alert-title,.rst-content .warning .wy-alert-title,.rst-content .wy-alert-warning.seealso .wy-alert-title,.rst-content .admonition-todo .wy-alert-title,.wy-alert.wy-alert-warning .rst-content .admonition-title,.rst-content .wy-alert.wy-alert-warning .admonition-title,.rst-content .wy-alert-warning.note .admonition-title,.rst-content .attention .admonition-title,.rst-content .caution .admonition-title,.rst-content .wy-alert-warning.danger .admonition-title,.rst-content .wy-alert-warning.error .admonition-title,.rst-content .wy-alert-warning.hint .admonition-title,.rst-content .wy-alert-warning.important .admonition-title,.rst-content .wy-alert-warning.tip .admonition-title,.rst-content .warning .admonition-title,.rst-content .wy-alert-warning.seealso .admonition-title,.rst-content .admonition-todo .admonition-title{background:#f0b37e}.wy-alert.wy-alert-info,.rst-content .note,.rst-content .wy-alert-info.attention,.rst-content .wy-alert-info.caution,.rst-content .wy-alert-info.danger,.rst-content .wy-alert-info.error,.rst-content .wy-alert-info.hint,.rst-content .wy-alert-info.important,.rst-content .wy-alert-info.tip,.rst-content .wy-alert-info.warning,.rst-content .seealso,.rst-content .wy-alert-info.admonition-todo{background:#e7f2fa}.wy-alert.wy-alert-info .wy-alert-title,.rst-content .note .wy-alert-title,.rst-content .wy-alert-info.attention .wy-alert-title,.rst-content .wy-alert-info.caution .wy-alert-title,.rst-content .wy-alert-info.danger .wy-alert-title,.rst-content .wy-alert-info.error .wy-alert-title,.rst-content .wy-alert-info.hint .wy-alert-title,.rst-content .wy-alert-info.important .wy-alert-title,.rst-content .wy-alert-info.tip .wy-alert-title,.rst-content .wy-alert-info.warning .wy-alert-title,.rst-content .seealso .wy-alert-title,.rst-content .wy-alert-info.admonition-todo .wy-alert-title,.wy-alert.wy-alert-info .rst-content .admonition-title,.rst-content .wy-alert.wy-alert-info .admonition-title,.rst-content .note .admonition-title,.rst-content .wy-alert-info.attention .admonition-title,.rst-content .wy-alert-info.caution .admonition-title,.rst-content .wy-alert-info.danger .admonition-title,.rst-content .wy-alert-info.error .admonition-title,.rst-content .wy-alert-info.hint .admonition-title,.rst-content .wy-alert-info.important .admonition-title,.rst-content .wy-alert-info.tip .admonition-title,.rst-content .wy-alert-info.warning .admonition-title,.rst-content .seealso .admonition-title,.rst-content .wy-alert-info.admonition-todo .admonition-title{background:#6ab0de}.wy-alert.wy-alert-success,.rst-content .wy-alert-success.note,.rst-content .wy-alert-success.attention,.rst-content .wy-alert-success.caution,.rst-content .wy-alert-success.danger,.rst-content .wy-alert-success.error,.rst-content .hint,.rst-content .important,.rst-content .tip,.rst-content .wy-alert-success.warning,.rst-content .wy-alert-success.seealso,.rst-content .wy-alert-success.admonition-todo{background:#dbfaf4}.wy-alert.wy-alert-success .wy-alert-title,.rst-content .wy-alert-success.note .wy-alert-title,.rst-content .wy-alert-success.attention .wy-alert-title,.rst-content .wy-alert-success.caution .wy-alert-title,.rst-content .wy-alert-success.danger .wy-alert-title,.rst-content .wy-alert-success.error .wy-alert-title,.rst-content .hint .wy-alert-title,.rst-content .important .wy-alert-title,.rst-content .tip .wy-alert-title,.rst-content .wy-alert-success.warning .wy-alert-title,.rst-content .wy-alert-success.seealso .wy-alert-title,.rst-content .wy-alert-success.admonition-todo .wy-alert-title,.wy-alert.wy-alert-success .rst-content .admonition-title,.rst-content .wy-alert.wy-alert-success .admonition-title,.rst-content .wy-alert-success.note .admonition-title,.rst-content .wy-alert-success.attention .admonition-title,.rst-content .wy-alert-success.caution .admonition-title,.rst-content .wy-alert-success.danger .admonition-title,.rst-content .wy-alert-success.error .admonition-title,.rst-content .hint .admonition-title,.rst-content .important .admonition-title,.rst-content .tip .admonition-title,.rst-content .wy-alert-success.warning .admonition-title,.rst-content .wy-alert-success.seealso .admonition-title,.rst-content .wy-alert-success.admonition-todo .admonition-title{background:#1abc9c}.wy-alert.wy-alert-neutral,.rst-content .wy-alert-neutral.note,.rst-content .wy-alert-neutral.attention,.rst-content .wy-alert-neutral.caution,.rst-content .wy-alert-neutral.danger,.rst-content .wy-alert-neutral.error,.rst-content .wy-alert-neutral.hint,.rst-content .wy-alert-neutral.important,.rst-content .wy-alert-neutral.tip,.rst-content .wy-alert-neutral.warning,.rst-content .wy-alert-neutral.seealso,.rst-content .wy-alert-neutral.admonition-todo{background:#f3f6f6}.wy-alert.wy-alert-neutral .wy-alert-title,.rst-content .wy-alert-neutral.note .wy-alert-title,.rst-content .wy-alert-neutral.attention .wy-alert-title,.rst-content .wy-alert-neutral.caution .wy-alert-title,.rst-content .wy-alert-neutral.danger .wy-alert-title,.rst-content .wy-alert-neutral.error .wy-alert-title,.rst-content .wy-alert-neutral.hint .wy-alert-title,.rst-content .wy-alert-neutral.important .wy-alert-title,.rst-content .wy-alert-neutral.tip .wy-alert-title,.rst-content .wy-alert-neutral.warning .wy-alert-title,.rst-content .wy-alert-neutral.seealso .wy-alert-title,.rst-content .wy-alert-neutral.admonition-todo .wy-alert-title,.wy-alert.wy-alert-neutral .rst-content .admonition-title,.rst-content .wy-alert.wy-alert-neutral .admonition-title,.rst-content .wy-alert-neutral.note .admonition-title,.rst-content .wy-alert-neutral.attention .admonition-title,.rst-content .wy-alert-neutral.caution .admonition-title,.rst-content .wy-alert-neutral.danger .admonition-title,.rst-content .wy-alert-neutral.error .admonition-title,.rst-content .wy-alert-neutral.hint .admonition-title,.rst-content .wy-alert-neutral.important .admonition-title,.rst-content .wy-alert-neutral.tip .admonition-title,.rst-content .wy-alert-neutral.warning .admonition-title,.rst-content .wy-alert-neutral.seealso .admonition-title,.rst-content .wy-alert-neutral.admonition-todo .admonition-title{color:#404040;background:#e1e4e5}.wy-alert.wy-alert-neutral a,.rst-content .wy-alert-neutral.note a,.rst-content .wy-alert-neutral.attention a,.rst-content .wy-alert-neutral.caution a,.rst-content .wy-alert-neutral.danger a,.rst-content .wy-alert-neutral.error a,.rst-content .wy-alert-neutral.hint a,.rst-content .wy-alert-neutral.important a,.rst-content .wy-alert-neutral.tip a,.rst-content .wy-alert-neutral.warning a,.rst-content .wy-alert-neutral.seealso a,.rst-content .wy-alert-neutral.admonition-todo a{color:#2980B9}.wy-alert p:last-child,.rst-content .note p:last-child,.rst-content .attention p:last-child,.rst-content .caution p:last-child,.rst-content .danger p:last-child,.rst-content .error p:last-child,.rst-content .hint p:last-child,.rst-content .important p:last-child,.rst-content .tip p:last-child,.rst-content .warning p:last-child,.rst-content .seealso p:last-child,.rst-content .admonition-todo p:last-child{margin-bottom:0}.wy-tray-container{position:fixed;bottom:0px;left:0;z-index:600}.wy-tray-container li{display:block;width:300px;background:transparent;color:#fff;text-align:center;box-shadow:0 5px 5px 0 rgba(0,0,0,0.1);padding:0 24px;min-width:20%;opacity:0;height:0;line-height:56px;overflow:hidden;-webkit-transition:all 0.3s ease-in;-moz-transition:all 0.3s ease-in;transition:all 0.3s ease-in}.wy-tray-container li.wy-tray-item-success{background:#27AE60}.wy-tray-container li.wy-tray-item-info{background:#2980B9}.wy-tray-container li.wy-tray-item-warning{background:#E67E22}.wy-tray-container li.wy-tray-item-danger{background:#E74C3C}.wy-tray-container li.on{opacity:1;height:56px}@media screen and (max-width: 768px){.wy-tray-container{bottom:auto;top:0;width:100%}.wy-tray-container li{width:100%}}button{font-size:100%;margin:0;vertical-align:baseline;*vertical-align:middle;cursor:pointer;line-height:normal;-webkit-appearance:button;*overflow:visible}button::-moz-focus-inner,input::-moz-focus-inner{border:0;padding:0}button[disabled]{cursor:default}.btn{display:inline-block;border-radius:2px;line-height:normal;white-space:nowrap;text-align:center;cursor:pointer;font-size:100%;padding:6px 12px 8px 12px;color:#fff;border:1px solid rgba(0,0,0,0.1);background-color:#27AE60;text-decoration:none;font-weight:normal;font-family:"Lato","proxima-nova","Helvetica Neue",Arial,sans-serif;box-shadow:0px 1px 2px -1px rgba(255,255,255,0.5) inset,0px -2px 0px 0px rgba(0,0,0,0.1) inset;outline-none:false;vertical-align:middle;*display:inline;zoom:1;-webkit-user-drag:none;-webkit-user-select:none;-moz-user-select:none;-ms-user-select:none;user-select:none;-webkit-transition:all 0.1s linear;-moz-transition:all 0.1s linear;transition:all 0.1s linear}.btn-hover{background:#2e8ece;color:#fff}.btn:hover{background:#2cc36b;color:#fff}.btn:focus{background:#2cc36b;outline:0}.btn:active{box-shadow:0px -1px 0px 0px rgba(0,0,0,0.05) inset,0px 2px 0px 0px rgba(0,0,0,0.1) inset;padding:8px 12px 6px 12px}.btn:visited{color:#fff}.btn:disabled{background-image:none;filter:progid:DXImageTransform.Microsoft.gradient(enabled = false);filter:alpha(opacity=40);opacity:0.4;cursor:not-allowed;box-shadow:none}.btn-disabled{background-image:none;filter:progid:DXImageTransform.Microsoft.gradient(enabled = false);filter:alpha(opacity=40);opacity:0.4;cursor:not-allowed;box-shadow:none}.btn-disabled:hover,.btn-disabled:focus,.btn-disabled:active{background-image:none;filter:progid:DXImageTransform.Microsoft.gradient(enabled = false);filter:alpha(opacity=40);opacity:0.4;cursor:not-allowed;box-shadow:none}.btn::-moz-focus-inner{padding:0;border:0}.btn-small{font-size:80%}.btn-info{background-color:#2980B9 !important}.btn-info:hover{background-color:#2e8ece !important}.btn-neutral{background-color:#f3f6f6 !important;color:#404040 !important}.btn-neutral:hover{background-color:#e5ebeb !important;color:#404040}.btn-neutral:visited{color:#404040 !important}.btn-success{background-color:#27AE60 !important}.btn-success:hover{background-color:#295 !important}.btn-danger{background-color:#E74C3C !important}.btn-danger:hover{background-color:#ea6153 !important}.btn-warning{background-color:#E67E22 !important}.btn-warning:hover{background-color:#e98b39 !important}.btn-invert{background-color:#222}.btn-invert:hover{background-color:#2f2f2f !important}.btn-link{background-color:transparent !important;color:#2980B9;box-shadow:none;border-color:transparent !important}.btn-link:hover{background-color:transparent !important;color:#409ad5 !important;box-shadow:none}.btn-link:active{background-color:transparent !important;color:#409ad5 !important;box-shadow:none}.btn-link:visited{color:#9B59B6}.wy-btn-group .btn,.wy-control .btn{vertical-align:middle}.wy-btn-group{margin-bottom:24px;*zoom:1}.wy-btn-group:before,.wy-btn-group:after{display:table;content:""}.wy-btn-group:after{clear:both}.wy-dropdown{position:relative;display:inline-block}.wy-dropdown-active .wy-dropdown-menu{display:block}.wy-dropdown-menu{position:absolute;left:0;display:none;float:left;top:100%;min-width:100%;background:#fcfcfc;z-index:100;border:solid 1px #cfd7dd;box-shadow:0 2px 2px 0 rgba(0,0,0,0.1);padding:12px}.wy-dropdown-menu>dd>a{display:block;clear:both;color:#404040;white-space:nowrap;font-size:90%;padding:0 12px;cursor:pointer}.wy-dropdown-menu>dd>a:hover{background:#2980B9;color:#fff}.wy-dropdown-menu>dd.divider{border-top:solid 1px #cfd7dd;margin:6px 0}.wy-dropdown-menu>dd.search{padding-bottom:12px}.wy-dropdown-menu>dd.search input[type="search"]{width:100%}.wy-dropdown-menu>dd.call-to-action{background:#e3e3e3;text-transform:uppercase;font-weight:500;font-size:80%}.wy-dropdown-menu>dd.call-to-action:hover{background:#e3e3e3}.wy-dropdown-menu>dd.call-to-action .btn{color:#fff}.wy-dropdown.wy-dropdown-up .wy-dropdown-menu{bottom:100%;top:auto;left:auto;right:0}.wy-dropdown.wy-dropdown-bubble .wy-dropdown-menu{background:#fcfcfc;margin-top:2px}.wy-dropdown.wy-dropdown-bubble .wy-dropdown-menu a{padding:6px 12px}.wy-dropdown.wy-dropdown-bubble .wy-dropdown-menu a:hover{background:#2980B9;color:#fff}.wy-dropdown.wy-dropdown-left .wy-dropdown-menu{right:0;left:auto;text-align:right}.wy-dropdown-arrow:before{content:" ";border-bottom:5px solid #f5f5f5;border-left:5px solid transparent;border-right:5px solid transparent;position:absolute;display:block;top:-4px;left:50%;margin-left:-3px}.wy-dropdown-arrow.wy-dropdown-arrow-left:before{left:11px}.wy-form-stacked select{display:block}.wy-form-aligned input,.wy-form-aligned textarea,.wy-form-aligned select,.wy-form-aligned .wy-help-inline,.wy-form-aligned label{display:inline-block;*display:inline;*zoom:1;vertical-align:middle}.wy-form-aligned .wy-control-group>label{display:inline-block;vertical-align:middle;width:10em;margin:6px 12px 0 0;float:left}.wy-form-aligned .wy-control{float:left}.wy-form-aligned .wy-control label{display:block}.wy-form-aligned .wy-control select{margin-top:6px}fieldset{border:0;margin:0;padding:0}legend{display:block;width:100%;border:0;padding:0;white-space:normal;margin-bottom:24px;font-size:150%;*margin-left:-7px}label{display:block;margin:0 0 0.3125em 0;color:#333;font-size:90%}input,select,textarea{font-size:100%;margin:0;vertical-align:baseline;*vertical-align:middle}.wy-control-group{margin-bottom:24px;*zoom:1;max-width:68em;margin-left:auto;margin-right:auto;*zoom:1}.wy-control-group:before,.wy-control-group:after{display:table;content:""}.wy-control-group:after{clear:both}.wy-control-group:before,.wy-control-group:after{display:table;content:""}.wy-control-group:after{clear:both}.wy-control-group.wy-control-group-required>label:after{content:" *";color:#E74C3C}.wy-control-group .wy-form-full,.wy-control-group .wy-form-halves,.wy-control-group .wy-form-thirds{padding-bottom:12px}.wy-control-group .wy-form-full select,.wy-control-group .wy-form-halves select,.wy-control-group .wy-form-thirds select{width:100%}.wy-control-group .wy-form-full input[type="text"],.wy-control-group .wy-form-full input[type="password"],.wy-control-group .wy-form-full input[type="email"],.wy-control-group .wy-form-full input[type="url"],.wy-control-group .wy-form-full input[type="date"],.wy-control-group .wy-form-full input[type="month"],.wy-control-group .wy-form-full input[type="time"],.wy-control-group .wy-form-full input[type="datetime"],.wy-control-group .wy-form-full input[type="datetime-local"],.wy-control-group .wy-form-full input[type="week"],.wy-control-group .wy-form-full input[type="number"],.wy-control-group .wy-form-full input[type="search"],.wy-control-group .wy-form-full input[type="tel"],.wy-control-group .wy-form-full input[type="color"],.wy-control-group .wy-form-halves input[type="text"],.wy-control-group .wy-form-halves input[type="password"],.wy-control-group .wy-form-halves input[type="email"],.wy-control-group .wy-form-halves input[type="url"],.wy-control-group .wy-form-halves input[type="date"],.wy-control-group .wy-form-halves input[type="month"],.wy-control-group .wy-form-halves input[type="time"],.wy-control-group .wy-form-halves input[type="datetime"],.wy-control-group .wy-form-halves input[type="datetime-local"],.wy-control-group .wy-form-halves input[type="week"],.wy-control-group .wy-form-halves input[type="number"],.wy-control-group .wy-form-halves input[type="search"],.wy-control-group .wy-form-halves input[type="tel"],.wy-control-group .wy-form-halves input[type="color"],.wy-control-group .wy-form-thirds input[type="text"],.wy-control-group .wy-form-thirds input[type="password"],.wy-control-group .wy-form-thirds input[type="email"],.wy-control-group .wy-form-thirds input[type="url"],.wy-control-group .wy-form-thirds input[type="date"],.wy-control-group .wy-form-thirds input[type="month"],.wy-control-group .wy-form-thirds input[type="time"],.wy-control-group .wy-form-thirds input[type="datetime"],.wy-control-group .wy-form-thirds input[type="datetime-local"],.wy-control-group .wy-form-thirds input[type="week"],.wy-control-group .wy-form-thirds input[type="number"],.wy-control-group .wy-form-thirds input[type="search"],.wy-control-group .wy-form-thirds input[type="tel"],.wy-control-group .wy-form-thirds input[type="color"]{width:100%}.wy-control-group .wy-form-full{float:left;display:block;margin-right:2.35765%;width:100%;margin-right:0}.wy-control-group .wy-form-full:last-child{margin-right:0}.wy-control-group .wy-form-halves{float:left;display:block;margin-right:2.35765%;width:48.82117%}.wy-control-group .wy-form-halves:last-child{margin-right:0}.wy-control-group .wy-form-halves:nth-of-type(2n){margin-right:0}.wy-control-group .wy-form-halves:nth-of-type(2n+1){clear:left}.wy-control-group .wy-form-thirds{float:left;display:block;margin-right:2.35765%;width:31.76157%}.wy-control-group .wy-form-thirds:last-child{margin-right:0}.wy-control-group .wy-form-thirds:nth-of-type(3n){margin-right:0}.wy-control-group .wy-form-thirds:nth-of-type(3n+1){clear:left}.wy-control-group.wy-control-group-no-input .wy-control{margin:6px 0 0 0;font-size:90%}.wy-control-no-input{display:inline-block;margin:6px 0 0 0;font-size:90%}.wy-control-group.fluid-input input[type="text"],.wy-control-group.fluid-input input[type="password"],.wy-control-group.fluid-input input[type="email"],.wy-control-group.fluid-input input[type="url"],.wy-control-group.fluid-input input[type="date"],.wy-control-group.fluid-input input[type="month"],.wy-control-group.fluid-input input[type="time"],.wy-control-group.fluid-input input[type="datetime"],.wy-control-group.fluid-input input[type="datetime-local"],.wy-control-group.fluid-input input[type="week"],.wy-control-group.fluid-input input[type="number"],.wy-control-group.fluid-input input[type="search"],.wy-control-group.fluid-input input[type="tel"],.wy-control-group.fluid-input input[type="color"]{width:100%}.wy-form-message-inline{display:inline-block;padding-left:0.3em;color:#666;vertical-align:middle;font-size:90%}.wy-form-message{display:block;color:#999;font-size:70%;margin-top:0.3125em;font-style:italic}.wy-form-message p{font-size:inherit;font-style:italic;margin-bottom:6px}.wy-form-message p:last-child{margin-bottom:0}input{line-height:normal}input[type="button"],input[type="reset"],input[type="submit"]{-webkit-appearance:button;cursor:pointer;font-family:"Lato","proxima-nova","Helvetica Neue",Arial,sans-serif;*overflow:visible}input[type="text"],input[type="password"],input[type="email"],input[type="url"],input[type="date"],input[type="month"],input[type="time"],input[type="datetime"],input[type="datetime-local"],input[type="week"],input[type="number"],input[type="search"],input[type="tel"],input[type="color"]{-webkit-appearance:none;padding:6px;display:inline-block;border:1px solid #ccc;font-size:80%;font-family:"Lato","proxima-nova","Helvetica Neue",Arial,sans-serif;box-shadow:inset 0 1px 3px #ddd;border-radius:0;-webkit-transition:border 0.3s linear;-moz-transition:border 0.3s linear;transition:border 0.3s linear}input[type="datetime-local"]{padding:0.34375em 0.625em}input[disabled]{cursor:default}input[type="checkbox"],input[type="radio"]{-webkit-box-sizing:border-box;-moz-box-sizing:border-box;box-sizing:border-box;padding:0;margin-right:0.3125em;*height:13px;*width:13px}input[type="search"]{-webkit-box-sizing:border-box;-moz-box-sizing:border-box;box-sizing:border-box}input[type="search"]::-webkit-search-cancel-button,input[type="search"]::-webkit-search-decoration{-webkit-appearance:none}input[type="text"]:focus,input[type="password"]:focus,input[type="email"]:focus,input[type="url"]:focus,input[type="date"]:focus,input[type="month"]:focus,input[type="time"]:focus,input[type="datetime"]:focus,input[type="datetime-local"]:focus,input[type="week"]:focus,input[type="number"]:focus,input[type="search"]:focus,input[type="tel"]:focus,input[type="color"]:focus{outline:0;outline:thin dotted \9;border-color:#333}input.no-focus:focus{border-color:#ccc !important}input[type="file"]:focus,input[type="radio"]:focus,input[type="checkbox"]:focus{outline:thin dotted #333;outline:1px auto #129FEA}input[type="text"][disabled],input[type="password"][disabled],input[type="email"][disabled],input[type="url"][disabled],input[type="date"][disabled],input[type="month"][disabled],input[type="time"][disabled],input[type="datetime"][disabled],input[type="datetime-local"][disabled],input[type="week"][disabled],input[type="number"][disabled],input[type="search"][disabled],input[type="tel"][disabled],input[type="color"][disabled]{cursor:not-allowed;background-color:#fafafa}input:focus:invalid,textarea:focus:invalid,select:focus:invalid{color:#E74C3C;border:1px solid #E74C3C}input:focus:invalid:focus,textarea:focus:invalid:focus,select:focus:invalid:focus{border-color:#E74C3C}input[type="file"]:focus:invalid:focus,input[type="radio"]:focus:invalid:focus,input[type="checkbox"]:focus:invalid:focus{outline-color:#E74C3C}input.wy-input-large{padding:12px;font-size:100%}textarea{overflow:auto;vertical-align:top;width:100%;font-family:"Lato","proxima-nova","Helvetica Neue",Arial,sans-serif}select,textarea{padding:0.5em 0.625em;display:inline-block;border:1px solid #ccc;font-size:80%;box-shadow:inset 0 1px 3px #ddd;-webkit-transition:border 0.3s linear;-moz-transition:border 0.3s linear;transition:border 0.3s linear}select{border:1px solid #ccc;background-color:#fff}select[multiple]{height:auto}select:focus,textarea:focus{outline:0}select[disabled],textarea[disabled],input[readonly],select[readonly],textarea[readonly]{cursor:not-allowed;background-color:#fafafa}input[type="radio"][disabled],input[type="checkbox"][disabled]{cursor:not-allowed}.wy-checkbox,.wy-radio{margin:6px 0;color:#404040;display:block}.wy-checkbox input,.wy-radio input{vertical-align:baseline}.wy-form-message-inline{display:inline-block;*display:inline;*zoom:1;vertical-align:middle}.wy-input-prefix,.wy-input-suffix{white-space:nowrap;padding:6px}.wy-input-prefix .wy-input-context,.wy-input-suffix .wy-input-context{line-height:27px;padding:0 8px;display:inline-block;font-size:80%;background-color:#f3f6f6;border:solid 1px #ccc;color:#999}.wy-input-suffix .wy-input-context{border-left:0}.wy-input-prefix .wy-input-context{border-right:0}.wy-switch{width:36px;height:12px;margin:12px 0;position:relative;border-radius:4px;background:#ccc;cursor:pointer;-webkit-transition:all 0.2s ease-in-out;-moz-transition:all 0.2s ease-in-out;transition:all 0.2s ease-in-out}.wy-switch:before{position:absolute;content:"";display:block;width:18px;height:18px;border-radius:4px;background:#999;left:-3px;top:-3px;-webkit-transition:all 0.2s ease-in-out;-moz-transition:all 0.2s ease-in-out;transition:all 0.2s ease-in-out}.wy-switch:after{content:"false";position:absolute;left:48px;display:block;font-size:12px;color:#ccc}.wy-switch.active{background:#1e8449}.wy-switch.active:before{left:24px;background:#27AE60}.wy-switch.active:after{content:"true"}.wy-switch.disabled,.wy-switch.active.disabled{cursor:not-allowed}.wy-control-group.wy-control-group-error .wy-form-message,.wy-control-group.wy-control-group-error>label{color:#E74C3C}.wy-control-group.wy-control-group-error input[type="text"],.wy-control-group.wy-control-group-error input[type="password"],.wy-control-group.wy-control-group-error input[type="email"],.wy-control-group.wy-control-group-error input[type="url"],.wy-control-group.wy-control-group-error input[type="date"],.wy-control-group.wy-control-group-error input[type="month"],.wy-control-group.wy-control-group-error input[type="time"],.wy-control-group.wy-control-group-error input[type="datetime"],.wy-control-group.wy-control-group-error input[type="datetime-local"],.wy-control-group.wy-control-group-error input[type="week"],.wy-control-group.wy-control-group-error input[type="number"],.wy-control-group.wy-control-group-error input[type="search"],.wy-control-group.wy-control-group-error input[type="tel"],.wy-control-group.wy-control-group-error input[type="color"]{border:solid 1px #E74C3C}.wy-control-group.wy-control-group-error textarea{border:solid 1px #E74C3C}.wy-inline-validate{white-space:nowrap}.wy-inline-validate .wy-input-context{padding:0.5em 0.625em;display:inline-block;font-size:80%}.wy-inline-validate.wy-inline-validate-success .wy-input-context{color:#27AE60}.wy-inline-validate.wy-inline-validate-danger .wy-input-context{color:#E74C3C}.wy-inline-validate.wy-inline-validate-warning .wy-input-context{color:#E67E22}.wy-inline-validate.wy-inline-validate-info .wy-input-context{color:#2980B9}.rotate-90{-webkit-transform:rotate(90deg);-moz-transform:rotate(90deg);-ms-transform:rotate(90deg);-o-transform:rotate(90deg);transform:rotate(90deg)}.rotate-180{-webkit-transform:rotate(180deg);-moz-transform:rotate(180deg);-ms-transform:rotate(180deg);-o-transform:rotate(180deg);transform:rotate(180deg)}.rotate-270{-webkit-transform:rotate(270deg);-moz-transform:rotate(270deg);-ms-transform:rotate(270deg);-o-transform:rotate(270deg);transform:rotate(270deg)}.mirror{-webkit-transform:scaleX(-1);-moz-transform:scaleX(-1);-ms-transform:scaleX(-1);-o-transform:scaleX(-1);transform:scaleX(-1)}.mirror.rotate-90{-webkit-transform:scaleX(-1) rotate(90deg);-moz-transform:scaleX(-1) rotate(90deg);-ms-transform:scaleX(-1) rotate(90deg);-o-transform:scaleX(-1) rotate(90deg);transform:scaleX(-1) rotate(90deg)}.mirror.rotate-180{-webkit-transform:scaleX(-1) rotate(180deg);-moz-transform:scaleX(-1) rotate(180deg);-ms-transform:scaleX(-1) rotate(180deg);-o-transform:scaleX(-1) rotate(180deg);transform:scaleX(-1) rotate(180deg)}.mirror.rotate-270{-webkit-transform:scaleX(-1) rotate(270deg);-moz-transform:scaleX(-1) rotate(270deg);-ms-transform:scaleX(-1) rotate(270deg);-o-transform:scaleX(-1) rotate(270deg);transform:scaleX(-1) rotate(270deg)}@media only screen and (max-width: 480px){.wy-form button[type="submit"]{margin:0.7em 0 0}.wy-form input[type="text"],.wy-form input[type="password"],.wy-form input[type="email"],.wy-form input[type="url"],.wy-form input[type="date"],.wy-form input[type="month"],.wy-form input[type="time"],.wy-form input[type="datetime"],.wy-form input[type="datetime-local"],.wy-form input[type="week"],.wy-form input[type="number"],.wy-form input[type="search"],.wy-form input[type="tel"],.wy-form input[type="color"]{margin-bottom:0.3em;display:block}.wy-form label{margin-bottom:0.3em;display:block}.wy-form input[type="password"],.wy-form input[type="email"],.wy-form input[type="url"],.wy-form input[type="date"],.wy-form input[type="month"],.wy-form input[type="time"],.wy-form input[type="datetime"],.wy-form input[type="datetime-local"],.wy-form input[type="week"],.wy-form input[type="number"],.wy-form input[type="search"],.wy-form input[type="tel"],.wy-form input[type="color"]{margin-bottom:0}.wy-form-aligned .wy-control-group label{margin-bottom:0.3em;text-align:left;display:block;width:100%}.wy-form-aligned .wy-control{margin:1.5em 0 0 0}.wy-form .wy-help-inline,.wy-form-message-inline,.wy-form-message{display:block;font-size:80%;padding:6px 0}}@media screen and (max-width: 768px){.tablet-hide{display:none}}@media screen and (max-width: 480px){.mobile-hide{display:none}}.float-left{float:left}.float-right{float:right}.full-width{width:100%}.wy-table,.rst-content table.docutils,.rst-content table.field-list{border-collapse:collapse;border-spacing:0;empty-cells:show;margin-bottom:24px}.wy-table caption,.rst-content table.docutils caption,.rst-content table.field-list caption{color:#000;font:italic 85%/1 arial,sans-serif;padding:1em 0;text-align:center}.wy-table td,.rst-content table.docutils td,.rst-content table.field-list td,.wy-table th,.rst-content table.docutils th,.rst-content table.field-list th{font-size:90%;margin:0;overflow:visible;padding:8px 16px}.wy-table td:first-child,.rst-content table.docutils td:first-child,.rst-content table.field-list td:first-child,.wy-table th:first-child,.rst-content table.docutils th:first-child,.rst-content table.field-list th:first-child{border-left-width:0}.wy-table thead,.rst-content table.docutils thead,.rst-content table.field-list thead{color:#000;text-align:left;vertical-align:bottom;white-space:nowrap}.wy-table thead th,.rst-content table.docutils thead th,.rst-content table.field-list thead th{font-weight:bold;border-bottom:solid 2px #e1e4e5}.wy-table td,.rst-content table.docutils td,.rst-content table.field-list td{background-color:transparent;vertical-align:middle}.wy-table td p,.rst-content table.docutils td p,.rst-content table.field-list td p{line-height:18px}.wy-table td p:last-child,.rst-content table.docutils td p:last-child,.rst-content table.field-list td p:last-child{margin-bottom:0}.wy-table .wy-table-cell-min,.rst-content table.docutils .wy-table-cell-min,.rst-content table.field-list .wy-table-cell-min{width:1%;padding-right:0}.wy-table .wy-table-cell-min input[type=checkbox],.rst-content table.docutils .wy-table-cell-min input[type=checkbox],.rst-content table.field-list .wy-table-cell-min input[type=checkbox],.wy-table .wy-table-cell-min input[type=checkbox],.rst-content table.docutils .wy-table-cell-min input[type=checkbox],.rst-content table.field-list .wy-table-cell-min input[type=checkbox]{margin:0}.wy-table-secondary{color:gray;font-size:90%}.wy-table-tertiary{color:gray;font-size:80%}.wy-table-odd td,.wy-table-striped tr:nth-child(2n-1) td,.rst-content table.docutils:not(.field-list) tr:nth-child(2n-1) td{background-color:#f3f6f6}.wy-table-backed{background-color:#f3f6f6}.wy-table-bordered-all,.rst-content table.docutils{border:1px solid #e1e4e5}.wy-table-bordered-all td,.rst-content table.docutils td{border-bottom:1px solid #e1e4e5;border-left:1px solid #e1e4e5}.wy-table-bordered-all tbody>tr:last-child td,.rst-content table.docutils tbody>tr:last-child td{border-bottom-width:0}.wy-table-bordered{border:1px solid #e1e4e5}.wy-table-bordered-rows td{border-bottom:1px solid #e1e4e5}.wy-table-bordered-rows tbody>tr:last-child td{border-bottom-width:0}.wy-table-horizontal tbody>tr:last-child td{border-bottom-width:0}.wy-table-horizontal td,.wy-table-horizontal th{border-width:0 0 1px 0;border-bottom:1px solid #e1e4e5}.wy-table-horizontal tbody>tr:last-child td{border-bottom-width:0}.wy-table-responsive{margin-bottom:24px;max-width:100%;overflow:auto}.wy-table-responsive table{margin-bottom:0 !important}.wy-table-responsive table td,.wy-table-responsive table th{white-space:nowrap}a{color:#2980B9;text-decoration:none;cursor:pointer}a:hover{color:#3091d1}a:visited{color:#9B59B6}html{height:100%;overflow-x:hidden}body{font-family:"Lato","proxima-nova","Helvetica Neue",Arial,sans-serif;font-weight:normal;color:#404040;min-height:100%;overflow-x:hidden;background:#edf0f2}.wy-text-left{text-align:left}.wy-text-center{text-align:center}.wy-text-right{text-align:right}.wy-text-large{font-size:120%}.wy-text-normal{font-size:100%}.wy-text-small,small{font-size:80%}.wy-text-strike{text-decoration:line-through}.wy-text-warning{color:#E67E22 !important}a.wy-text-warning:hover{color:#eb9950 !important}.wy-text-info{color:#2980B9 !important}a.wy-text-info:hover{color:#409ad5 !important}.wy-text-success{color:#27AE60 !important}a.wy-text-success:hover{color:#36d278 !important}.wy-text-danger{color:#E74C3C !important}a.wy-text-danger:hover{color:#ed7669 !important}.wy-text-neutral{color:#404040 !important}a.wy-text-neutral:hover{color:#595959 !important}h1,h2,h3,h4,h5,h6,legend{margin-top:0;font-weight:700;font-family:"Roboto Slab","ff-tisa-web-pro","Georgia",Arial,sans-serif}p{line-height:24px;margin:0;font-size:16px;margin-bottom:24px}h1{font-size:175%}h2{font-size:150%}h3{font-size:125%}h4{font-size:115%}h5{font-size:110%}h6{font-size:100%}hr{display:block;height:1px;border:0;border-top:1px solid #e1e4e5;margin:24px 0;padding:0}code,.rst-content tt{white-space:nowrap;max-width:100%;background:#fff;border:solid 1px #e1e4e5;font-size:75%;padding:0 5px;font-family:Consolas,"Andale Mono WT","Andale Mono","Lucida Console","Lucida Sans Typewriter","DejaVu Sans Mono","Bitstream Vera Sans Mono","Liberation Mono","Nimbus Mono L",Monaco,"Courier New",Courier,monospace;color:#E74C3C;overflow-x:auto}code.code-large,.rst-content tt.code-large{font-size:90%}.wy-plain-list-disc,.rst-content .section ul,.rst-content .toctree-wrapper ul,article ul{list-style:disc;line-height:24px;margin-bottom:24px}.wy-plain-list-disc li,.rst-content .section ul li,.rst-content .toctree-wrapper ul li,article ul li{list-style:disc;margin-left:24px}.wy-plain-list-disc li p:last-child,.rst-content .section ul li p:last-child,.rst-content .toctree-wrapper ul li p:last-child,article ul li p:last-child{margin-bottom:0}.wy-plain-list-disc li ul,.rst-content .section ul li ul,.rst-content .toctree-wrapper ul li ul,article ul li ul{margin-bottom:0}.wy-plain-list-disc li li,.rst-content .section ul li li,.rst-content .toctree-wrapper ul li li,article ul li li{list-style:circle}.wy-plain-list-disc li li li,.rst-content .section ul li li li,.rst-content .toctree-wrapper ul li li li,article ul li li li{list-style:square}.wy-plain-list-disc li ol li,.rst-content .section ul li ol li,.rst-content .toctree-wrapper ul li ol li,article ul li ol li{list-style:decimal}.wy-plain-list-decimal,.rst-content .section ol,.rst-content ol.arabic,article ol{list-style:decimal;line-height:24px;margin-bottom:24px}.wy-plain-list-decimal li,.rst-content .section ol li,.rst-content ol.arabic li,article ol li{list-style:decimal;margin-left:24px}.wy-plain-list-decimal li p:last-child,.rst-content .section ol li p:last-child,.rst-content ol.arabic li p:last-child,article ol li p:last-child{margin-bottom:0}.wy-plain-list-decimal li ul,.rst-content .section ol li ul,.rst-content ol.arabic li ul,article ol li ul{margin-bottom:0}.wy-plain-list-decimal li ul li,.rst-content .section ol li ul li,.rst-content ol.arabic li ul li,article ol li ul li{list-style:disc}.codeblock-example{border:1px solid #e1e4e5;border-bottom:none;padding:24px;padding-top:48px;font-weight:500;background:#fff;position:relative}.codeblock-example:after{content:"Example";position:absolute;top:0px;left:0px;background:#9B59B6;color:#fff;padding:6px 12px}.codeblock-example.prettyprint-example-only{border:1px solid #e1e4e5;margin-bottom:24px}.codeblock,pre.literal-block,.rst-content .literal-block,.rst-content pre.literal-block,div[class^='highlight']{border:1px solid #e1e4e5;padding:0px;overflow-x:auto;background:#fff;margin:1px 0 24px 0}.codeblock div[class^='highlight'],pre.literal-block div[class^='highlight'],.rst-content .literal-block div[class^='highlight'],div[class^='highlight'] div[class^='highlight']{border:none;background:none;margin:0}div[class^='highlight'] td.code{width:100%}.linenodiv pre{border-right:solid 1px #e6e9ea;margin:0;padding:12px 12px;font-family:Consolas,"Andale Mono WT","Andale Mono","Lucida Console","Lucida Sans Typewriter","DejaVu Sans Mono","Bitstream Vera Sans Mono","Liberation Mono","Nimbus Mono L",Monaco,"Courier New",Courier,monospace;font-size:12px;line-height:1.5;color:#d9d9d9}div[class^='highlight'] pre{white-space:pre;margin:0;padding:12px 12px;font-family:Consolas,"Andale Mono WT","Andale Mono","Lucida Console","Lucida Sans Typewriter","DejaVu Sans Mono","Bitstream Vera Sans Mono","Liberation Mono","Nimbus Mono L",Monaco,"Courier New",Courier,monospace;font-size:12px;line-height:1.5;display:block;overflow:auto;color:#404040}@media print{.codeblock,pre.literal-block,.rst-content .literal-block,.rst-content pre.literal-block,div[class^='highlight'],div[class^='highlight'] pre{white-space:pre-wrap}}.hll{background-color:#ffc;margin:0 -12px;padding:0 12px;display:block}.c{color:#998;font-style:italic}.err{color:#a61717;background-color:#e3d2d2}.k{font-weight:bold}.o{font-weight:bold}.cm{color:#998;font-style:italic}.cp{color:#999;font-weight:bold}.c1{color:#998;font-style:italic}.cs{color:#999;font-weight:bold;font-style:italic}.gd{color:#000;background-color:#fdd}.gd .x{color:#000;background-color:#faa}.ge{font-style:italic}.gr{color:#a00}.gh{color:#999}.gi{color:#000;background-color:#dfd}.gi .x{color:#000;background-color:#afa}.go{color:#888}.gp{color:#555}.gs{font-weight:bold}.gu{color:purple;font-weight:bold}.gt{color:#a00}.kc{font-weight:bold}.kd{font-weight:bold}.kn{font-weight:bold}.kp{font-weight:bold}.kr{font-weight:bold}.kt{color:#458;font-weight:bold}.m{color:#099}.s{color:#d14}.n{color:#333}.na{color:teal}.nb{color:#0086b3}.nc{color:#458;font-weight:bold}.no{color:teal}.ni{color:purple}.ne{color:#900;font-weight:bold}.nf{color:#900;font-weight:bold}.nn{color:#555}.nt{color:navy}.nv{color:teal}.ow{font-weight:bold}.w{color:#bbb}.mf{color:#099}.mh{color:#099}.mi{color:#099}.mo{color:#099}.sb{color:#d14}.sc{color:#d14}.sd{color:#d14}.s2{color:#d14}.se{color:#d14}.sh{color:#d14}.si{color:#d14}.sx{color:#d14}.sr{color:#009926}.s1{color:#d14}.ss{color:#990073}.bp{color:#999}.vc{color:teal}.vg{color:teal}.vi{color:teal}.il{color:#099}.gc{color:#999;background-color:#EAF2F5}.wy-breadcrumbs li{display:inline-block}.wy-breadcrumbs li.wy-breadcrumbs-aside{float:right}.wy-breadcrumbs li a{display:inline-block;padding:5px}.wy-breadcrumbs li a:first-child{padding-left:0}.wy-breadcrumbs-extra{margin-bottom:0;color:#b3b3b3;font-size:80%;display:inline-block}@media screen and (max-width: 480px){.wy-breadcrumbs-extra{display:none}.wy-breadcrumbs li.wy-breadcrumbs-aside{display:none}}@media print{.wy-breadcrumbs li.wy-breadcrumbs-aside{display:none}}.wy-affix{position:fixed;top:1.618em}.wy-menu a:hover{text-decoration:none}.wy-menu-horiz{*zoom:1}.wy-menu-horiz:before,.wy-menu-horiz:after{display:table;content:""}.wy-menu-horiz:after{clear:both}.wy-menu-horiz ul,.wy-menu-horiz li{display:inline-block}.wy-menu-horiz li:hover{background:rgba(255,255,255,0.1)}.wy-menu-horiz li.divide-left{border-left:solid 1px #404040}.wy-menu-horiz li.divide-right{border-right:solid 1px #404040}.wy-menu-horiz a{height:32px;display:inline-block;line-height:32px;padding:0 16px}.wy-menu-vertical header{height:32px;display:inline-block;line-height:32px;padding:0 1.618em;display:block;font-weight:bold;text-transform:uppercase;font-size:80%;color:#2980B9;white-space:nowrap}.wy-menu-vertical ul{margin-bottom:0}.wy-menu-vertical li.divide-top{border-top:solid 1px #404040}.wy-menu-vertical li.divide-bottom{border-bottom:solid 1px #404040}.wy-menu-vertical li.current{background:#e3e3e3}.wy-menu-vertical li.current a{color:gray;border-right:solid 1px #c9c9c9;padding:0.4045em 2.427em}.wy-menu-vertical li.current a:hover{background:#d6d6d6}.wy-menu-vertical li.on a,.wy-menu-vertical li.current>a{color:#404040;padding:0.4045em 1.618em;font-weight:bold;position:relative;background:#fcfcfc;border:none;border-bottom:solid 1px #c9c9c9;border-top:solid 1px #c9c9c9;padding-left:1.618em -4px}.wy-menu-vertical li.on a:hover,.wy-menu-vertical li.current>a:hover{background:#fcfcfc}.wy-menu-vertical li.toctree-l2.current>a{background:#c9c9c9;padding:0.4045em 2.427em}.wy-menu-vertical li.current ul{display:block}.wy-menu-vertical li ul{margin-bottom:0;display:none}.wy-menu-vertical .local-toc li ul{display:block}.wy-menu-vertical li ul li a{margin-bottom:0;color:#b3b3b3;font-weight:normal}.wy-menu-vertical a{display:inline-block;line-height:18px;padding:0.4045em 1.618em;display:block;position:relative;font-size:90%;color:#b3b3b3}.wy-menu-vertical a:hover{background-color:#4e4a4a;cursor:pointer}.wy-menu-vertical a:active{background-color:#2980B9;cursor:pointer;color:#fff}.wy-side-nav-search{z-index:200;background-color:#2980B9;text-align:center;padding:0.809em;display:block;color:#fcfcfc;margin-bottom:0.809em}.wy-side-nav-search input[type=text]{width:100%;border-radius:50px;padding:6px 12px;border-color:#2472a4}.wy-side-nav-search img{display:block;margin:auto auto 0.809em auto;height:45px;width:45px;background-color:#2980B9;padding:5px;border-radius:100%}.wy-side-nav-search>a,.wy-side-nav-search .wy-dropdown>a{color:#fcfcfc;font-size:100%;font-weight:bold;display:inline-block;padding:4px 6px;margin-bottom:0.809em}.wy-side-nav-search>a:hover,.wy-side-nav-search .wy-dropdown>a:hover{background:rgba(255,255,255,0.1)}.wy-nav .wy-menu-vertical header{color:#2980B9}.wy-nav .wy-menu-vertical a{color:#b3b3b3}.wy-nav .wy-menu-vertical a:hover{background-color:#2980B9;color:#fff}[data-menu-wrap]{-webkit-transition:all 0.2s ease-in;-moz-transition:all 0.2s ease-in;transition:all 0.2s ease-in;position:absolute;opacity:1;width:100%;opacity:0}[data-menu-wrap].move-center{left:0;right:auto;opacity:1}[data-menu-wrap].move-left{right:auto;left:-100%;opacity:0}[data-menu-wrap].move-right{right:-100%;left:auto;opacity:0}.wy-body-for-nav{background:left repeat-y #fcfcfc;background-image:url();background-size:300px 1px}.wy-grid-for-nav{position:absolute;width:100%;height:100%}.wy-nav-side{position:absolute;top:0;left:0;width:300px;overflow:hidden;min-height:100%;background:#343131;z-index:200}.wy-nav-top{display:none;background:#2980B9;color:#fff;padding:0.4045em 0.809em;position:relative;line-height:50px;text-align:center;font-size:100%;*zoom:1}.wy-nav-top:before,.wy-nav-top:after{display:table;content:""}.wy-nav-top:after{clear:both}.wy-nav-top a{color:#fff;font-weight:bold}.wy-nav-top img{margin-right:12px;height:45px;width:45px;background-color:#2980B9;padding:5px;border-radius:100%}.wy-nav-top i{font-size:30px;float:left;cursor:pointer}.wy-nav-content-wrap{margin-left:300px;background:#fcfcfc;min-height:100%}.wy-nav-content{padding:1.618em 3.236em;height:100%;max-width:800px;margin:auto}.wy-body-mask{position:fixed;width:100%;height:100%;background:rgba(0,0,0,0.2);display:none;z-index:499}.wy-body-mask.on{display:block}footer{color:#999}footer p{margin-bottom:12px}.rst-footer-buttons{*zoom:1}.rst-footer-buttons:before,.rst-footer-buttons:after{display:table;content:""}.rst-footer-buttons:after{clear:both}#search-results .search li{margin-bottom:24px;border-bottom:solid 1px #e1e4e5;padding-bottom:24px}#search-results .search li:first-child{border-top:solid 1px #e1e4e5;padding-top:24px}#search-results .search li a{font-size:120%;margin-bottom:12px;display:inline-block}#search-results .context{color:gray;font-size:90%}@media screen and (max-width: 768px){.wy-body-for-nav{background:#fcfcfc}.wy-nav-top{display:block}.wy-nav-side{left:-300px}.wy-nav-side.shift{width:85%;left:0}.wy-nav-content-wrap{margin-left:0}.wy-nav-content-wrap .wy-nav-content{padding:1.618em}.wy-nav-content-wrap.shift{position:fixed;min-width:100%;left:85%;top:0;height:100%;overflow:hidden}}@media screen and (min-width: 1400px){.wy-nav-content-wrap{background:rgba(0,0,0,0.05)}.wy-nav-content{margin:0;background:#fcfcfc}}@media print{.rst-versions,footer,.wy-nav-side{display:none}.wy-nav-content-wrap{margin-left:0}}nav.stickynav{position:fixed;top:0}.rst-versions{position:fixed;bottom:0;left:0;width:300px;color:#fcfcfc;background:#1f1d1d;border-top:solid 10px #343131;font-family:"Lato","proxima-nova","Helvetica Neue",Arial,sans-serif;z-index:400}.rst-versions a{color:#2980B9;text-decoration:none}.rst-versions .rst-badge-small{display:none}.rst-versions .rst-current-version{padding:12px;background-color:#272525;display:block;text-align:right;font-size:90%;cursor:pointer;color:#27AE60;*zoom:1}.rst-versions .rst-current-version:before,.rst-versions .rst-current-version:after{display:table;content:""}.rst-versions .rst-current-version:after{clear:both}.rst-versions .rst-current-version .fa,.rst-versions .rst-current-version .rst-content .admonition-title,.rst-content .rst-versions .rst-current-version .admonition-title,.rst-versions .rst-current-version .rst-content h1 .headerlink,.rst-content h1 .rst-versions .rst-current-version .headerlink,.rst-versions .rst-current-version .rst-content h2 .headerlink,.rst-content h2 .rst-versions .rst-current-version .headerlink,.rst-versions .rst-current-version .rst-content h3 .headerlink,.rst-content h3 .rst-versions .rst-current-version .headerlink,.rst-versions .rst-current-version .rst-content h4 .headerlink,.rst-content h4 .rst-versions .rst-current-version .headerlink,.rst-versions .rst-current-version .rst-content h5 .headerlink,.rst-content h5 .rst-versions .rst-current-version .headerlink,.rst-versions .rst-current-version .rst-content h6 .headerlink,.rst-content h6 .rst-versions .rst-current-version .headerlink,.rst-versions .rst-current-version .rst-content dl dt .headerlink,.rst-content dl dt .rst-versions .rst-current-version .headerlink,.rst-versions .rst-current-version .icon{color:#fcfcfc}.rst-versions .rst-current-version .fa-book,.rst-versions .rst-current-version .icon-book{float:left}.rst-versions .rst-current-version .icon-book{float:left}.rst-versions .rst-current-version.rst-out-of-date{background-color:#E74C3C;color:#fff}.rst-versions .rst-current-version.rst-active-old-version{background-color:#F1C40F;color:#000}.rst-versions.shift-up .rst-other-versions{display:block}.rst-versions .rst-other-versions{font-size:90%;padding:12px;color:gray;display:none}.rst-versions .rst-other-versions hr{display:block;height:1px;border:0;margin:20px 0;padding:0;border-top:solid 1px #413d3d}.rst-versions .rst-other-versions dd{display:inline-block;margin:0}.rst-versions .rst-other-versions dd a{display:inline-block;padding:6px;color:#fcfcfc}.rst-versions.rst-badge{width:auto;bottom:20px;right:20px;left:auto;border:none;max-width:300px}.rst-versions.rst-badge .icon-book{float:none}.rst-versions.rst-badge .fa-book,.rst-versions.rst-badge .icon-book{float:none}.rst-versions.rst-badge.shift-up .rst-current-version{text-align:right}.rst-versions.rst-badge.shift-up .rst-current-version .fa-book,.rst-versions.rst-badge.shift-up .rst-current-version .icon-book{float:left}.rst-versions.rst-badge.shift-up .rst-current-version .icon-book{float:left}.rst-versions.rst-badge .rst-current-version{width:auto;height:30px;line-height:30px;padding:0 6px;display:block;text-align:center}@media screen and (max-width: 768px){.rst-versions{width:85%;display:none}.rst-versions.shift{display:block}img{width:100%;height:auto}}.rst-content img{max-width:100%;height:auto !important}.rst-content div.figure{margin-bottom:24px}.rst-content div.figure.align-center{text-align:center}.rst-content .section>img,.rst-content .section>a>img{margin-bottom:24px}.rst-content blockquote{margin-left:24px;line-height:24px;margin-bottom:24px}.rst-content .note .last,.rst-content .attention .last,.rst-content .caution .last,.rst-content .danger .last,.rst-content .error .last,.rst-content .hint .last,.rst-content .important .last,.rst-content .tip .last,.rst-content .warning .last,.rst-content .seealso .last,.rst-content .admonition-todo .last{margin-bottom:0}.rst-content .admonition-title:before{margin-right:4px}.rst-content .admonition table{border-color:rgba(0,0,0,0.1)}.rst-content .admonition table td,.rst-content .admonition table th{background:transparent !important;border-color:rgba(0,0,0,0.1) !important}.rst-content .section ol.loweralpha,.rst-content .section ol.loweralpha li{list-style:lower-alpha}.rst-content .section ol.upperalpha,.rst-content .section ol.upperalpha li{list-style:upper-alpha}.rst-content .section ol p,.rst-content .section ul p{margin-bottom:12px}.rst-content .line-block{margin-left:24px}.rst-content .topic-title{font-weight:bold;margin-bottom:12px}.rst-content .toc-backref{color:#404040}.rst-content .align-right{float:right;margin:0px 0px 24px 24px}.rst-content .align-left{float:left;margin:0px 24px 24px 0px}.rst-content .align-center{margin:auto;display:block}.rst-content h1 .headerlink,.rst-content h2 .headerlink,.rst-content h3 .headerlink,.rst-content h4 .headerlink,.rst-content h5 .headerlink,.rst-content h6 .headerlink,.rst-content dl dt .headerlink{display:none;visibility:hidden;font-size:14px}.rst-content h1 .headerlink:after,.rst-content h2 .headerlink:after,.rst-content h3 .headerlink:after,.rst-content h4 .headerlink:after,.rst-content h5 .headerlink:after,.rst-content h6 .headerlink:after,.rst-content dl dt .headerlink:after{visibility:visible;content:"";font-family:FontAwesome;display:inline-block}.rst-content h1:hover .headerlink,.rst-content h2:hover .headerlink,.rst-content h3:hover .headerlink,.rst-content h4:hover .headerlink,.rst-content h5:hover .headerlink,.rst-content h6:hover .headerlink,.rst-content dl dt:hover .headerlink{display:inline-block}.rst-content .sidebar{float:right;width:40%;display:block;margin:0 0 24px 24px;padding:24px;background:#f3f6f6;border:solid 1px #e1e4e5}.rst-content .sidebar p,.rst-content .sidebar ul,.rst-content .sidebar dl{font-size:90%}.rst-content .sidebar .last{margin-bottom:0}.rst-content .sidebar .sidebar-title{display:block;font-family:"Roboto Slab","ff-tisa-web-pro","Georgia",Arial,sans-serif;font-weight:bold;background:#e1e4e5;padding:6px 12px;margin:-24px;margin-bottom:24px;font-size:100%}.rst-content .highlighted{background:#F1C40F;display:inline-block;font-weight:bold;padding:0 6px}.rst-content .footnote-reference,.rst-content .citation-reference{vertical-align:super;font-size:90%}.rst-content table.docutils.citation,.rst-content table.docutils.footnote{background:none;border:none;color:#999}.rst-content table.docutils.citation td,.rst-content table.docutils.citation tr,.rst-content table.docutils.footnote td,.rst-content table.docutils.footnote tr{border:none;background-color:transparent !important;white-space:normal}.rst-content table.docutils.citation td.label,.rst-content table.docutils.footnote td.label{padding-left:0;padding-right:0;vertical-align:top}.rst-content table.field-list{border:none}.rst-content table.field-list td{border:none;padding-top:5px}.rst-content table.field-list td>strong{display:inline-block;margin-top:3px}.rst-content table.field-list .field-name{padding-right:10px;text-align:left;white-space:nowrap}.rst-content table.field-list .field-body{text-align:left;padding-left:0}.rst-content tt{color:#000}.rst-content tt big,.rst-content tt em{font-size:100% !important;line-height:normal}.rst-content tt .xref,a .rst-content tt{font-weight:bold}.rst-content a tt{color:#2980B9}.rst-content dl{margin-bottom:24px}.rst-content dl dt{font-weight:bold}.rst-content dl p,.rst-content dl table,.rst-content dl ul,.rst-content dl ol{margin-bottom:12px !important}.rst-content dl dd{margin:0 0 12px 24px}.rst-content dl:not(.docutils){margin-bottom:24px}.rst-content dl:not(.docutils) dt{display:inline-block;margin:6px 0;font-size:90%;line-height:normal;background:#e7f2fa;color:#2980B9;border-top:solid 3px #6ab0de;padding:6px;position:relative}.rst-content dl:not(.docutils) dt:before{color:#6ab0de}.rst-content dl:not(.docutils) dt .headerlink{color:#404040;font-size:100% !important}.rst-content dl:not(.docutils) dl dt{margin-bottom:6px;border:none;border-left:solid 3px #ccc;background:#f0f0f0;color:gray}.rst-content dl:not(.docutils) dl dt .headerlink{color:#404040;font-size:100% !important}.rst-content dl:not(.docutils) dt:first-child{margin-top:0}.rst-content dl:not(.docutils) tt{font-weight:bold}.rst-content dl:not(.docutils) tt.descname,.rst-content dl:not(.docutils) tt.descclassname{background-color:transparent;border:none;padding:0;font-size:100% !important}.rst-content dl:not(.docutils) tt.descname{font-weight:bold}.rst-content dl:not(.docutils) .optional{display:inline-block;padding:0 4px;color:#000;font-weight:bold}.rst-content dl:not(.docutils) .property{display:inline-block;padding-right:8px}.rst-content .viewcode-link,.rst-content .viewcode-back{display:inline-block;color:#27AE60;font-size:80%;padding-left:24px}.rst-content .viewcode-back{display:block;float:right}.rst-content p.rubric{margin-bottom:12px;font-weight:bold}@media screen and (max-width: 480px){.rst-content .sidebar{width:100%}}span[id*='MathJax-Span']{color:#404040}.math{text-align:center} +/*# sourceMappingURL=theme.css.map */ diff --git a/docs/build/html/_static/custom.css b/docs/build/html/_static/custom.css new file mode 100644 index 0000000..2a924f1 --- /dev/null +++ b/docs/build/html/_static/custom.css @@ -0,0 +1 @@ +/* This file intentionally left blank. */ diff --git a/docs/build/html/_static/doctools.js b/docs/build/html/_static/doctools.js new file mode 100644 index 0000000..c7bfe76 --- /dev/null +++ b/docs/build/html/_static/doctools.js @@ -0,0 +1,263 @@ +/* + * doctools.js + * ~~~~~~~~~~~ + * + * Sphinx JavaScript utilities for all documentation. + * + * :copyright: Copyright 2007-2015 by the Sphinx team, see AUTHORS. + * :license: BSD, see LICENSE for details. + * + */ + +/** + * select a different prefix for underscore + */ +$u = _.noConflict(); + +/** + * make the code below compatible with browsers without + * an installed firebug like debugger +if (!window.console || !console.firebug) { + var names = ["log", "debug", "info", "warn", "error", "assert", "dir", + "dirxml", "group", "groupEnd", "time", "timeEnd", "count", "trace", + "profile", "profileEnd"]; + window.console = {}; + for (var i = 0; i < names.length; ++i) + window.console[names[i]] = function() {}; +} + */ + +/** + * small helper function to urldecode strings + */ +jQuery.urldecode = function(x) { + return decodeURIComponent(x).replace(/\+/g, ' '); +}; + +/** + * small helper function to urlencode strings + */ +jQuery.urlencode = encodeURIComponent; + +/** + * This function returns the parsed url parameters of the + * current request. Multiple values per key are supported, + * it will always return arrays of strings for the value parts. + */ +jQuery.getQueryParameters = function(s) { + if (typeof s == 'undefined') + s = document.location.search; + var parts = s.substr(s.indexOf('?') + 1).split('&'); + var result = {}; + for (var i = 0; i < parts.length; i++) { + var tmp = parts[i].split('=', 2); + var key = jQuery.urldecode(tmp[0]); + var value = jQuery.urldecode(tmp[1]); + if (key in result) + result[key].push(value); + else + result[key] = [value]; + } + return result; +}; + +/** + * highlight a given string on a jquery object by wrapping it in + * span elements with the given class name. + */ +jQuery.fn.highlightText = function(text, className) { + function highlight(node) { + if (node.nodeType == 3) { + var val = node.nodeValue; + var pos = val.toLowerCase().indexOf(text); + if (pos >= 0 && !jQuery(node.parentNode).hasClass(className)) { + var span = document.createElement("span"); + span.className = className; + span.appendChild(document.createTextNode(val.substr(pos, text.length))); + node.parentNode.insertBefore(span, node.parentNode.insertBefore( + document.createTextNode(val.substr(pos + text.length)), + node.nextSibling)); + node.nodeValue = val.substr(0, pos); + } + } + else if (!jQuery(node).is("button, select, textarea")) { + jQuery.each(node.childNodes, function() { + highlight(this); + }); + } + } + return this.each(function() { + highlight(this); + }); +}; + +/* + * backward compatibility for jQuery.browser + * This will be supported until firefox bug is fixed. + */ +if (!jQuery.browser) { + jQuery.uaMatch = function(ua) { + ua = ua.toLowerCase(); + + var match = /(chrome)[ \/]([\w.]+)/.exec(ua) || + /(webkit)[ \/]([\w.]+)/.exec(ua) || + /(opera)(?:.*version|)[ \/]([\w.]+)/.exec(ua) || + /(msie) ([\w.]+)/.exec(ua) || + ua.indexOf("compatible") < 0 && /(mozilla)(?:.*? rv:([\w.]+)|)/.exec(ua) || + []; + + return { + browser: match[ 1 ] || "", + version: match[ 2 ] || "0" + }; + }; + jQuery.browser = {}; + jQuery.browser[jQuery.uaMatch(navigator.userAgent).browser] = true; +} + +/** + * Small JavaScript module for the documentation. + */ +var Documentation = { + + init : function() { + this.fixFirefoxAnchorBug(); + this.highlightSearchWords(); + this.initIndexTable(); + }, + + /** + * i18n support + */ + TRANSLATIONS : {}, + PLURAL_EXPR : function(n) { return n == 1 ? 0 : 1; }, + LOCALE : 'unknown', + + // gettext and ngettext don't access this so that the functions + // can safely bound to a different name (_ = Documentation.gettext) + gettext : function(string) { + var translated = Documentation.TRANSLATIONS[string]; + if (typeof translated == 'undefined') + return string; + return (typeof translated == 'string') ? translated : translated[0]; + }, + + ngettext : function(singular, plural, n) { + var translated = Documentation.TRANSLATIONS[singular]; + if (typeof translated == 'undefined') + return (n == 1) ? singular : plural; + return translated[Documentation.PLURALEXPR(n)]; + }, + + addTranslations : function(catalog) { + for (var key in catalog.messages) + this.TRANSLATIONS[key] = catalog.messages[key]; + this.PLURAL_EXPR = new Function('n', 'return +(' + catalog.plural_expr + ')'); + this.LOCALE = catalog.locale; + }, + + /** + * add context elements like header anchor links + */ + addContextElements : function() { + $('div[id] > :header:first').each(function() { + $('\u00B6'). + attr('href', '#' + this.id). + attr('title', _('Permalink to this headline')). + appendTo(this); + }); + $('dt[id]').each(function() { + $('\u00B6'). + attr('href', '#' + this.id). + attr('title', _('Permalink to this definition')). + appendTo(this); + }); + }, + + /** + * workaround a firefox stupidity + * see: https://bugzilla.mozilla.org/show_bug.cgi?id=645075 + */ + fixFirefoxAnchorBug : function() { + if (document.location.hash) + window.setTimeout(function() { + document.location.href += ''; + }, 10); + }, + + /** + * highlight the search words provided in the url in the text + */ + highlightSearchWords : function() { + var params = $.getQueryParameters(); + var terms = (params.highlight) ? params.highlight[0].split(/\s+/) : []; + if (terms.length) { + var body = $('div.body'); + if (!body.length) { + body = $('body'); + } + window.setTimeout(function() { + $.each(terms, function() { + body.highlightText(this.toLowerCase(), 'highlighted'); + }); + }, 10); + $('') + .appendTo($('#searchbox')); + } + }, + + /** + * init the domain index toggle buttons + */ + initIndexTable : function() { + var togglers = $('img.toggler').click(function() { + var src = $(this).attr('src'); + var idnum = $(this).attr('id').substr(7); + $('tr.cg-' + idnum).toggle(); + if (src.substr(-9) == 'minus.png') + $(this).attr('src', src.substr(0, src.length-9) + 'plus.png'); + else + $(this).attr('src', src.substr(0, src.length-8) + 'minus.png'); + }).css('display', ''); + if (DOCUMENTATION_OPTIONS.COLLAPSE_INDEX) { + togglers.click(); + } + }, + + /** + * helper function to hide the search marks again + */ + hideSearchWords : function() { + $('#searchbox .highlight-link').fadeOut(300); + $('span.highlighted').removeClass('highlighted'); + }, + + /** + * make the url absolute + */ + makeURL : function(relativeURL) { + return DOCUMENTATION_OPTIONS.URL_ROOT + '/' + relativeURL; + }, + + /** + * get the current relative url + */ + getCurrentURL : function() { + var path = document.location.pathname; + var parts = path.split(/\//); + $.each(DOCUMENTATION_OPTIONS.URL_ROOT.split(/\//), function() { + if (this == '..') + parts.pop(); + }); + var url = parts.join('/'); + return path.substring(url.lastIndexOf('/') + 1, path.length - 1); + } +}; + +// quick alias for translations +_ = Documentation.gettext; + +$(document).ready(function() { + Documentation.init(); +}); diff --git a/docs/build/html/_static/down-pressed.png b/docs/build/html/_static/down-pressed.png new file mode 100644 index 0000000..7c30d00 Binary files /dev/null and b/docs/build/html/_static/down-pressed.png differ diff --git a/docs/build/html/_static/down.png b/docs/build/html/_static/down.png new file mode 100644 index 0000000..f48098a Binary files /dev/null and b/docs/build/html/_static/down.png differ diff --git a/docs/build/html/_static/file.png b/docs/build/html/_static/file.png new file mode 100644 index 0000000..254c60b Binary files /dev/null and b/docs/build/html/_static/file.png differ diff --git a/docs/build/html/_static/fonts/Inconsolata-Bold.ttf b/docs/build/html/_static/fonts/Inconsolata-Bold.ttf new file mode 100644 index 0000000..809c1f5 Binary files /dev/null and b/docs/build/html/_static/fonts/Inconsolata-Bold.ttf differ diff --git a/docs/build/html/_static/fonts/Inconsolata-Regular.ttf b/docs/build/html/_static/fonts/Inconsolata-Regular.ttf new file mode 100644 index 0000000..fc981ce Binary files /dev/null and b/docs/build/html/_static/fonts/Inconsolata-Regular.ttf differ diff --git a/docs/build/html/_static/fonts/Lato-Bold.ttf b/docs/build/html/_static/fonts/Lato-Bold.ttf new file mode 100644 index 0000000..1d23c70 Binary files /dev/null and b/docs/build/html/_static/fonts/Lato-Bold.ttf differ diff --git a/docs/build/html/_static/fonts/Lato-Regular.ttf b/docs/build/html/_static/fonts/Lato-Regular.ttf new file mode 100644 index 0000000..0f3d0f8 Binary files /dev/null and b/docs/build/html/_static/fonts/Lato-Regular.ttf differ diff --git a/docs/build/html/_static/fonts/RobotoSlab-Bold.ttf b/docs/build/html/_static/fonts/RobotoSlab-Bold.ttf new file mode 100644 index 0000000..df5d1df Binary files /dev/null and b/docs/build/html/_static/fonts/RobotoSlab-Bold.ttf differ diff --git a/docs/build/html/_static/fonts/RobotoSlab-Regular.ttf b/docs/build/html/_static/fonts/RobotoSlab-Regular.ttf new file mode 100644 index 0000000..eb52a79 Binary files /dev/null and b/docs/build/html/_static/fonts/RobotoSlab-Regular.ttf differ diff --git a/docs/build/html/_static/fonts/fontawesome-webfont.eot b/docs/build/html/_static/fonts/fontawesome-webfont.eot new file mode 100644 index 0000000..7c79c6a Binary files /dev/null and b/docs/build/html/_static/fonts/fontawesome-webfont.eot differ diff --git a/docs/build/html/_static/fonts/fontawesome-webfont.svg b/docs/build/html/_static/fonts/fontawesome-webfont.svg new file mode 100644 index 0000000..45fdf33 --- /dev/null +++ b/docs/build/html/_static/fonts/fontawesome-webfont.svg @@ -0,0 +1,414 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + \ No newline at end of file diff --git a/docs/build/html/_static/fonts/fontawesome-webfont.ttf b/docs/build/html/_static/fonts/fontawesome-webfont.ttf new file mode 100644 index 0000000..e89738d Binary files /dev/null and b/docs/build/html/_static/fonts/fontawesome-webfont.ttf differ diff --git a/docs/build/html/_static/fonts/fontawesome-webfont.woff b/docs/build/html/_static/fonts/fontawesome-webfont.woff new file mode 100644 index 0000000..8c1748a Binary files /dev/null and b/docs/build/html/_static/fonts/fontawesome-webfont.woff differ diff --git a/docs/build/html/_static/jquery-1.11.1.js b/docs/build/html/_static/jquery-1.11.1.js new file mode 100644 index 0000000..d4b67f7 --- /dev/null +++ b/docs/build/html/_static/jquery-1.11.1.js @@ -0,0 +1,10308 @@ +/*! + * jQuery JavaScript Library v1.11.1 + * http://jquery.com/ + * + * Includes Sizzle.js + * http://sizzlejs.com/ + * + * Copyright 2005, 2014 jQuery Foundation, Inc. and other contributors + * Released under the MIT license + * http://jquery.org/license + * + * Date: 2014-05-01T17:42Z + */ + +(function( global, factory ) { + + if ( typeof module === "object" && typeof module.exports === "object" ) { + // For CommonJS and CommonJS-like environments where a proper window is present, + // execute the factory and get jQuery + // For environments that do not inherently posses a window with a document + // (such as Node.js), expose a jQuery-making factory as module.exports + // This accentuates the need for the creation of a real window + // e.g. var jQuery = require("jquery")(window); + // See ticket #14549 for more info + module.exports = global.document ? + factory( global, true ) : + function( w ) { + if ( !w.document ) { + throw new Error( "jQuery requires a window with a document" ); + } + return factory( w ); + }; + } else { + factory( global ); + } + +// Pass this if window is not defined yet +}(typeof window !== "undefined" ? window : this, function( window, noGlobal ) { + +// Can't do this because several apps including ASP.NET trace +// the stack via arguments.caller.callee and Firefox dies if +// you try to trace through "use strict" call chains. (#13335) +// Support: Firefox 18+ +// + +var deletedIds = []; + +var slice = deletedIds.slice; + +var concat = deletedIds.concat; + +var push = deletedIds.push; + +var indexOf = deletedIds.indexOf; + +var class2type = {}; + +var toString = class2type.toString; + +var hasOwn = class2type.hasOwnProperty; + +var support = {}; + + + +var + version = "1.11.1", + + // Define a local copy of jQuery + jQuery = function( selector, context ) { + // The jQuery object is actually just the init constructor 'enhanced' + // Need init if jQuery is called (just allow error to be thrown if not included) + return new jQuery.fn.init( selector, context ); + }, + + // Support: Android<4.1, IE<9 + // Make sure we trim BOM and NBSP + rtrim = /^[\s\uFEFF\xA0]+|[\s\uFEFF\xA0]+$/g, + + // Matches dashed string for camelizing + rmsPrefix = /^-ms-/, + rdashAlpha = /-([\da-z])/gi, + + // Used by jQuery.camelCase as callback to replace() + fcamelCase = function( all, letter ) { + return letter.toUpperCase(); + }; + +jQuery.fn = jQuery.prototype = { + // The current version of jQuery being used + jquery: version, + + constructor: jQuery, + + // Start with an empty selector + selector: "", + + // The default length of a jQuery object is 0 + length: 0, + + toArray: function() { + return slice.call( this ); + }, + + // Get the Nth element in the matched element set OR + // Get the whole matched element set as a clean array + get: function( num ) { + return num != null ? + + // Return just the one element from the set + ( num < 0 ? this[ num + this.length ] : this[ num ] ) : + + // Return all the elements in a clean array + slice.call( this ); + }, + + // Take an array of elements and push it onto the stack + // (returning the new matched element set) + pushStack: function( elems ) { + + // Build a new jQuery matched element set + var ret = jQuery.merge( this.constructor(), elems ); + + // Add the old object onto the stack (as a reference) + ret.prevObject = this; + ret.context = this.context; + + // Return the newly-formed element set + return ret; + }, + + // Execute a callback for every element in the matched set. + // (You can seed the arguments with an array of args, but this is + // only used internally.) + each: function( callback, args ) { + return jQuery.each( this, callback, args ); + }, + + map: function( callback ) { + return this.pushStack( jQuery.map(this, function( elem, i ) { + return callback.call( elem, i, elem ); + })); + }, + + slice: function() { + return this.pushStack( slice.apply( this, arguments ) ); + }, + + first: function() { + return this.eq( 0 ); + }, + + last: function() { + return this.eq( -1 ); + }, + + eq: function( i ) { + var len = this.length, + j = +i + ( i < 0 ? len : 0 ); + return this.pushStack( j >= 0 && j < len ? [ this[j] ] : [] ); + }, + + end: function() { + return this.prevObject || this.constructor(null); + }, + + // For internal use only. + // Behaves like an Array's method, not like a jQuery method. + push: push, + sort: deletedIds.sort, + splice: deletedIds.splice +}; + +jQuery.extend = jQuery.fn.extend = function() { + var src, copyIsArray, copy, name, options, clone, + target = arguments[0] || {}, + i = 1, + length = arguments.length, + deep = false; + + // Handle a deep copy situation + if ( typeof target === "boolean" ) { + deep = target; + + // skip the boolean and the target + target = arguments[ i ] || {}; + i++; + } + + // Handle case when target is a string or something (possible in deep copy) + if ( typeof target !== "object" && !jQuery.isFunction(target) ) { + target = {}; + } + + // extend jQuery itself if only one argument is passed + if ( i === length ) { + target = this; + i--; + } + + for ( ; i < length; i++ ) { + // Only deal with non-null/undefined values + if ( (options = arguments[ i ]) != null ) { + // Extend the base object + for ( name in options ) { + src = target[ name ]; + copy = options[ name ]; + + // Prevent never-ending loop + if ( target === copy ) { + continue; + } + + // Recurse if we're merging plain objects or arrays + if ( deep && copy && ( jQuery.isPlainObject(copy) || (copyIsArray = jQuery.isArray(copy)) ) ) { + if ( copyIsArray ) { + copyIsArray = false; + clone = src && jQuery.isArray(src) ? src : []; + + } else { + clone = src && jQuery.isPlainObject(src) ? src : {}; + } + + // Never move original objects, clone them + target[ name ] = jQuery.extend( deep, clone, copy ); + + // Don't bring in undefined values + } else if ( copy !== undefined ) { + target[ name ] = copy; + } + } + } + } + + // Return the modified object + return target; +}; + +jQuery.extend({ + // Unique for each copy of jQuery on the page + expando: "jQuery" + ( version + Math.random() ).replace( /\D/g, "" ), + + // Assume jQuery is ready without the ready module + isReady: true, + + error: function( msg ) { + throw new Error( msg ); + }, + + noop: function() {}, + + // See test/unit/core.js for details concerning isFunction. + // Since version 1.3, DOM methods and functions like alert + // aren't supported. They return false on IE (#2968). + isFunction: function( obj ) { + return jQuery.type(obj) === "function"; + }, + + isArray: Array.isArray || function( obj ) { + return jQuery.type(obj) === "array"; + }, + + isWindow: function( obj ) { + /* jshint eqeqeq: false */ + return obj != null && obj == obj.window; + }, + + isNumeric: function( obj ) { + // parseFloat NaNs numeric-cast false positives (null|true|false|"") + // ...but misinterprets leading-number strings, particularly hex literals ("0x...") + // subtraction forces infinities to NaN + return !jQuery.isArray( obj ) && obj - parseFloat( obj ) >= 0; + }, + + isEmptyObject: function( obj ) { + var name; + for ( name in obj ) { + return false; + } + return true; + }, + + isPlainObject: function( obj ) { + var key; + + // Must be an Object. + // Because of IE, we also have to check the presence of the constructor property. + // Make sure that DOM nodes and window objects don't pass through, as well + if ( !obj || jQuery.type(obj) !== "object" || obj.nodeType || jQuery.isWindow( obj ) ) { + return false; + } + + try { + // Not own constructor property must be Object + if ( obj.constructor && + !hasOwn.call(obj, "constructor") && + !hasOwn.call(obj.constructor.prototype, "isPrototypeOf") ) { + return false; + } + } catch ( e ) { + // IE8,9 Will throw exceptions on certain host objects #9897 + return false; + } + + // Support: IE<9 + // Handle iteration over inherited properties before own properties. + if ( support.ownLast ) { + for ( key in obj ) { + return hasOwn.call( obj, key ); + } + } + + // Own properties are enumerated firstly, so to speed up, + // if last one is own, then all properties are own. + for ( key in obj ) {} + + return key === undefined || hasOwn.call( obj, key ); + }, + + type: function( obj ) { + if ( obj == null ) { + return obj + ""; + } + return typeof obj === "object" || typeof obj === "function" ? + class2type[ toString.call(obj) ] || "object" : + typeof obj; + }, + + // Evaluates a script in a global context + // Workarounds based on findings by Jim Driscoll + // http://weblogs.java.net/blog/driscoll/archive/2009/09/08/eval-javascript-global-context + globalEval: function( data ) { + if ( data && jQuery.trim( data ) ) { + // We use execScript on Internet Explorer + // We use an anonymous function so that context is window + // rather than jQuery in Firefox + ( window.execScript || function( data ) { + window[ "eval" ].call( window, data ); + } )( data ); + } + }, + + // Convert dashed to camelCase; used by the css and data modules + // Microsoft forgot to hump their vendor prefix (#9572) + camelCase: function( string ) { + return string.replace( rmsPrefix, "ms-" ).replace( rdashAlpha, fcamelCase ); + }, + + nodeName: function( elem, name ) { + return elem.nodeName && elem.nodeName.toLowerCase() === name.toLowerCase(); + }, + + // args is for internal usage only + each: function( obj, callback, args ) { + var value, + i = 0, + length = obj.length, + isArray = isArraylike( obj ); + + if ( args ) { + if ( isArray ) { + for ( ; i < length; i++ ) { + value = callback.apply( obj[ i ], args ); + + if ( value === false ) { + break; + } + } + } else { + for ( i in obj ) { + value = callback.apply( obj[ i ], args ); + + if ( value === false ) { + break; + } + } + } + + // A special, fast, case for the most common use of each + } else { + if ( isArray ) { + for ( ; i < length; i++ ) { + value = callback.call( obj[ i ], i, obj[ i ] ); + + if ( value === false ) { + break; + } + } + } else { + for ( i in obj ) { + value = callback.call( obj[ i ], i, obj[ i ] ); + + if ( value === false ) { + break; + } + } + } + } + + return obj; + }, + + // Support: Android<4.1, IE<9 + trim: function( text ) { + return text == null ? + "" : + ( text + "" ).replace( rtrim, "" ); + }, + + // results is for internal usage only + makeArray: function( arr, results ) { + var ret = results || []; + + if ( arr != null ) { + if ( isArraylike( Object(arr) ) ) { + jQuery.merge( ret, + typeof arr === "string" ? + [ arr ] : arr + ); + } else { + push.call( ret, arr ); + } + } + + return ret; + }, + + inArray: function( elem, arr, i ) { + var len; + + if ( arr ) { + if ( indexOf ) { + return indexOf.call( arr, elem, i ); + } + + len = arr.length; + i = i ? i < 0 ? Math.max( 0, len + i ) : i : 0; + + for ( ; i < len; i++ ) { + // Skip accessing in sparse arrays + if ( i in arr && arr[ i ] === elem ) { + return i; + } + } + } + + return -1; + }, + + merge: function( first, second ) { + var len = +second.length, + j = 0, + i = first.length; + + while ( j < len ) { + first[ i++ ] = second[ j++ ]; + } + + // Support: IE<9 + // Workaround casting of .length to NaN on otherwise arraylike objects (e.g., NodeLists) + if ( len !== len ) { + while ( second[j] !== undefined ) { + first[ i++ ] = second[ j++ ]; + } + } + + first.length = i; + + return first; + }, + + grep: function( elems, callback, invert ) { + var callbackInverse, + matches = [], + i = 0, + length = elems.length, + callbackExpect = !invert; + + // Go through the array, only saving the items + // that pass the validator function + for ( ; i < length; i++ ) { + callbackInverse = !callback( elems[ i ], i ); + if ( callbackInverse !== callbackExpect ) { + matches.push( elems[ i ] ); + } + } + + return matches; + }, + + // arg is for internal usage only + map: function( elems, callback, arg ) { + var value, + i = 0, + length = elems.length, + isArray = isArraylike( elems ), + ret = []; + + // Go through the array, translating each of the items to their new values + if ( isArray ) { + for ( ; i < length; i++ ) { + value = callback( elems[ i ], i, arg ); + + if ( value != null ) { + ret.push( value ); + } + } + + // Go through every key on the object, + } else { + for ( i in elems ) { + value = callback( elems[ i ], i, arg ); + + if ( value != null ) { + ret.push( value ); + } + } + } + + // Flatten any nested arrays + return concat.apply( [], ret ); + }, + + // A global GUID counter for objects + guid: 1, + + // Bind a function to a context, optionally partially applying any + // arguments. + proxy: function( fn, context ) { + var args, proxy, tmp; + + if ( typeof context === "string" ) { + tmp = fn[ context ]; + context = fn; + fn = tmp; + } + + // Quick check to determine if target is callable, in the spec + // this throws a TypeError, but we will just return undefined. + if ( !jQuery.isFunction( fn ) ) { + return undefined; + } + + // Simulated bind + args = slice.call( arguments, 2 ); + proxy = function() { + return fn.apply( context || this, args.concat( slice.call( arguments ) ) ); + }; + + // Set the guid of unique handler to the same of original handler, so it can be removed + proxy.guid = fn.guid = fn.guid || jQuery.guid++; + + return proxy; + }, + + now: function() { + return +( new Date() ); + }, + + // jQuery.support is not used in Core but other projects attach their + // properties to it so it needs to exist. + support: support +}); + +// Populate the class2type map +jQuery.each("Boolean Number String Function Array Date RegExp Object Error".split(" "), function(i, name) { + class2type[ "[object " + name + "]" ] = name.toLowerCase(); +}); + +function isArraylike( obj ) { + var length = obj.length, + type = jQuery.type( obj ); + + if ( type === "function" || jQuery.isWindow( obj ) ) { + return false; + } + + if ( obj.nodeType === 1 && length ) { + return true; + } + + return type === "array" || length === 0 || + typeof length === "number" && length > 0 && ( length - 1 ) in obj; +} +var Sizzle = +/*! + * Sizzle CSS Selector Engine v1.10.19 + * http://sizzlejs.com/ + * + * Copyright 2013 jQuery Foundation, Inc. and other contributors + * Released under the MIT license + * http://jquery.org/license + * + * Date: 2014-04-18 + */ +(function( window ) { + +var i, + support, + Expr, + getText, + isXML, + tokenize, + compile, + select, + outermostContext, + sortInput, + hasDuplicate, + + // Local document vars + setDocument, + document, + docElem, + documentIsHTML, + rbuggyQSA, + rbuggyMatches, + matches, + contains, + + // Instance-specific data + expando = "sizzle" + -(new Date()), + preferredDoc = window.document, + dirruns = 0, + done = 0, + classCache = createCache(), + tokenCache = createCache(), + compilerCache = createCache(), + sortOrder = function( a, b ) { + if ( a === b ) { + hasDuplicate = true; + } + return 0; + }, + + // General-purpose constants + strundefined = typeof undefined, + MAX_NEGATIVE = 1 << 31, + + // Instance methods + hasOwn = ({}).hasOwnProperty, + arr = [], + pop = arr.pop, + push_native = arr.push, + push = arr.push, + slice = arr.slice, + // Use a stripped-down indexOf if we can't use a native one + indexOf = arr.indexOf || function( elem ) { + var i = 0, + len = this.length; + for ( ; i < len; i++ ) { + if ( this[i] === elem ) { + return i; + } + } + return -1; + }, + + booleans = "checked|selected|async|autofocus|autoplay|controls|defer|disabled|hidden|ismap|loop|multiple|open|readonly|required|scoped", + + // Regular expressions + + // Whitespace characters http://www.w3.org/TR/css3-selectors/#whitespace + whitespace = "[\\x20\\t\\r\\n\\f]", + // http://www.w3.org/TR/css3-syntax/#characters + characterEncoding = "(?:\\\\.|[\\w-]|[^\\x00-\\xa0])+", + + // Loosely modeled on CSS identifier characters + // An unquoted value should be a CSS identifier http://www.w3.org/TR/css3-selectors/#attribute-selectors + // Proper syntax: http://www.w3.org/TR/CSS21/syndata.html#value-def-identifier + identifier = characterEncoding.replace( "w", "w#" ), + + // Attribute selectors: http://www.w3.org/TR/selectors/#attribute-selectors + attributes = "\\[" + whitespace + "*(" + characterEncoding + ")(?:" + whitespace + + // Operator (capture 2) + "*([*^$|!~]?=)" + whitespace + + // "Attribute values must be CSS identifiers [capture 5] or strings [capture 3 or capture 4]" + "*(?:'((?:\\\\.|[^\\\\'])*)'|\"((?:\\\\.|[^\\\\\"])*)\"|(" + identifier + "))|)" + whitespace + + "*\\]", + + pseudos = ":(" + characterEncoding + ")(?:\\((" + + // To reduce the number of selectors needing tokenize in the preFilter, prefer arguments: + // 1. quoted (capture 3; capture 4 or capture 5) + "('((?:\\\\.|[^\\\\'])*)'|\"((?:\\\\.|[^\\\\\"])*)\")|" + + // 2. simple (capture 6) + "((?:\\\\.|[^\\\\()[\\]]|" + attributes + ")*)|" + + // 3. anything else (capture 2) + ".*" + + ")\\)|)", + + // Leading and non-escaped trailing whitespace, capturing some non-whitespace characters preceding the latter + rtrim = new RegExp( "^" + whitespace + "+|((?:^|[^\\\\])(?:\\\\.)*)" + whitespace + "+$", "g" ), + + rcomma = new RegExp( "^" + whitespace + "*," + whitespace + "*" ), + rcombinators = new RegExp( "^" + whitespace + "*([>+~]|" + whitespace + ")" + whitespace + "*" ), + + rattributeQuotes = new RegExp( "=" + whitespace + "*([^\\]'\"]*?)" + whitespace + "*\\]", "g" ), + + rpseudo = new RegExp( pseudos ), + ridentifier = new RegExp( "^" + identifier + "$" ), + + matchExpr = { + "ID": new RegExp( "^#(" + characterEncoding + ")" ), + "CLASS": new RegExp( "^\\.(" + characterEncoding + ")" ), + "TAG": new RegExp( "^(" + characterEncoding.replace( "w", "w*" ) + ")" ), + "ATTR": new RegExp( "^" + attributes ), + "PSEUDO": new RegExp( "^" + pseudos ), + "CHILD": new RegExp( "^:(only|first|last|nth|nth-last)-(child|of-type)(?:\\(" + whitespace + + "*(even|odd|(([+-]|)(\\d*)n|)" + whitespace + "*(?:([+-]|)" + whitespace + + "*(\\d+)|))" + whitespace + "*\\)|)", "i" ), + "bool": new RegExp( "^(?:" + booleans + ")$", "i" ), + // For use in libraries implementing .is() + // We use this for POS matching in `select` + "needsContext": new RegExp( "^" + whitespace + "*[>+~]|:(even|odd|eq|gt|lt|nth|first|last)(?:\\(" + + whitespace + "*((?:-\\d)?\\d*)" + whitespace + "*\\)|)(?=[^-]|$)", "i" ) + }, + + rinputs = /^(?:input|select|textarea|button)$/i, + rheader = /^h\d$/i, + + rnative = /^[^{]+\{\s*\[native \w/, + + // Easily-parseable/retrievable ID or TAG or CLASS selectors + rquickExpr = /^(?:#([\w-]+)|(\w+)|\.([\w-]+))$/, + + rsibling = /[+~]/, + rescape = /'|\\/g, + + // CSS escapes http://www.w3.org/TR/CSS21/syndata.html#escaped-characters + runescape = new RegExp( "\\\\([\\da-f]{1,6}" + whitespace + "?|(" + whitespace + ")|.)", "ig" ), + funescape = function( _, escaped, escapedWhitespace ) { + var high = "0x" + escaped - 0x10000; + // NaN means non-codepoint + // Support: Firefox<24 + // Workaround erroneous numeric interpretation of +"0x" + return high !== high || escapedWhitespace ? + escaped : + high < 0 ? + // BMP codepoint + String.fromCharCode( high + 0x10000 ) : + // Supplemental Plane codepoint (surrogate pair) + String.fromCharCode( high >> 10 | 0xD800, high & 0x3FF | 0xDC00 ); + }; + +// Optimize for push.apply( _, NodeList ) +try { + push.apply( + (arr = slice.call( preferredDoc.childNodes )), + preferredDoc.childNodes + ); + // Support: Android<4.0 + // Detect silently failing push.apply + arr[ preferredDoc.childNodes.length ].nodeType; +} catch ( e ) { + push = { apply: arr.length ? + + // Leverage slice if possible + function( target, els ) { + push_native.apply( target, slice.call(els) ); + } : + + // Support: IE<9 + // Otherwise append directly + function( target, els ) { + var j = target.length, + i = 0; + // Can't trust NodeList.length + while ( (target[j++] = els[i++]) ) {} + target.length = j - 1; + } + }; +} + +function Sizzle( selector, context, results, seed ) { + var match, elem, m, nodeType, + // QSA vars + i, groups, old, nid, newContext, newSelector; + + if ( ( context ? context.ownerDocument || context : preferredDoc ) !== document ) { + setDocument( context ); + } + + context = context || document; + results = results || []; + + if ( !selector || typeof selector !== "string" ) { + return results; + } + + if ( (nodeType = context.nodeType) !== 1 && nodeType !== 9 ) { + return []; + } + + if ( documentIsHTML && !seed ) { + + // Shortcuts + if ( (match = rquickExpr.exec( selector )) ) { + // Speed-up: Sizzle("#ID") + if ( (m = match[1]) ) { + if ( nodeType === 9 ) { + elem = context.getElementById( m ); + // Check parentNode to catch when Blackberry 4.6 returns + // nodes that are no longer in the document (jQuery #6963) + if ( elem && elem.parentNode ) { + // Handle the case where IE, Opera, and Webkit return items + // by name instead of ID + if ( elem.id === m ) { + results.push( elem ); + return results; + } + } else { + return results; + } + } else { + // Context is not a document + if ( context.ownerDocument && (elem = context.ownerDocument.getElementById( m )) && + contains( context, elem ) && elem.id === m ) { + results.push( elem ); + return results; + } + } + + // Speed-up: Sizzle("TAG") + } else if ( match[2] ) { + push.apply( results, context.getElementsByTagName( selector ) ); + return results; + + // Speed-up: Sizzle(".CLASS") + } else if ( (m = match[3]) && support.getElementsByClassName && context.getElementsByClassName ) { + push.apply( results, context.getElementsByClassName( m ) ); + return results; + } + } + + // QSA path + if ( support.qsa && (!rbuggyQSA || !rbuggyQSA.test( selector )) ) { + nid = old = expando; + newContext = context; + newSelector = nodeType === 9 && selector; + + // qSA works strangely on Element-rooted queries + // We can work around this by specifying an extra ID on the root + // and working up from there (Thanks to Andrew Dupont for the technique) + // IE 8 doesn't work on object elements + if ( nodeType === 1 && context.nodeName.toLowerCase() !== "object" ) { + groups = tokenize( selector ); + + if ( (old = context.getAttribute("id")) ) { + nid = old.replace( rescape, "\\$&" ); + } else { + context.setAttribute( "id", nid ); + } + nid = "[id='" + nid + "'] "; + + i = groups.length; + while ( i-- ) { + groups[i] = nid + toSelector( groups[i] ); + } + newContext = rsibling.test( selector ) && testContext( context.parentNode ) || context; + newSelector = groups.join(","); + } + + if ( newSelector ) { + try { + push.apply( results, + newContext.querySelectorAll( newSelector ) + ); + return results; + } catch(qsaError) { + } finally { + if ( !old ) { + context.removeAttribute("id"); + } + } + } + } + } + + // All others + return select( selector.replace( rtrim, "$1" ), context, results, seed ); +} + +/** + * Create key-value caches of limited size + * @returns {Function(string, Object)} Returns the Object data after storing it on itself with + * property name the (space-suffixed) string and (if the cache is larger than Expr.cacheLength) + * deleting the oldest entry + */ +function createCache() { + var keys = []; + + function cache( key, value ) { + // Use (key + " ") to avoid collision with native prototype properties (see Issue #157) + if ( keys.push( key + " " ) > Expr.cacheLength ) { + // Only keep the most recent entries + delete cache[ keys.shift() ]; + } + return (cache[ key + " " ] = value); + } + return cache; +} + +/** + * Mark a function for special use by Sizzle + * @param {Function} fn The function to mark + */ +function markFunction( fn ) { + fn[ expando ] = true; + return fn; +} + +/** + * Support testing using an element + * @param {Function} fn Passed the created div and expects a boolean result + */ +function assert( fn ) { + var div = document.createElement("div"); + + try { + return !!fn( div ); + } catch (e) { + return false; + } finally { + // Remove from its parent by default + if ( div.parentNode ) { + div.parentNode.removeChild( div ); + } + // release memory in IE + div = null; + } +} + +/** + * Adds the same handler for all of the specified attrs + * @param {String} attrs Pipe-separated list of attributes + * @param {Function} handler The method that will be applied + */ +function addHandle( attrs, handler ) { + var arr = attrs.split("|"), + i = attrs.length; + + while ( i-- ) { + Expr.attrHandle[ arr[i] ] = handler; + } +} + +/** + * Checks document order of two siblings + * @param {Element} a + * @param {Element} b + * @returns {Number} Returns less than 0 if a precedes b, greater than 0 if a follows b + */ +function siblingCheck( a, b ) { + var cur = b && a, + diff = cur && a.nodeType === 1 && b.nodeType === 1 && + ( ~b.sourceIndex || MAX_NEGATIVE ) - + ( ~a.sourceIndex || MAX_NEGATIVE ); + + // Use IE sourceIndex if available on both nodes + if ( diff ) { + return diff; + } + + // Check if b follows a + if ( cur ) { + while ( (cur = cur.nextSibling) ) { + if ( cur === b ) { + return -1; + } + } + } + + return a ? 1 : -1; +} + +/** + * Returns a function to use in pseudos for input types + * @param {String} type + */ +function createInputPseudo( type ) { + return function( elem ) { + var name = elem.nodeName.toLowerCase(); + return name === "input" && elem.type === type; + }; +} + +/** + * Returns a function to use in pseudos for buttons + * @param {String} type + */ +function createButtonPseudo( type ) { + return function( elem ) { + var name = elem.nodeName.toLowerCase(); + return (name === "input" || name === "button") && elem.type === type; + }; +} + +/** + * Returns a function to use in pseudos for positionals + * @param {Function} fn + */ +function createPositionalPseudo( fn ) { + return markFunction(function( argument ) { + argument = +argument; + return markFunction(function( seed, matches ) { + var j, + matchIndexes = fn( [], seed.length, argument ), + i = matchIndexes.length; + + // Match elements found at the specified indexes + while ( i-- ) { + if ( seed[ (j = matchIndexes[i]) ] ) { + seed[j] = !(matches[j] = seed[j]); + } + } + }); + }); +} + +/** + * Checks a node for validity as a Sizzle context + * @param {Element|Object=} context + * @returns {Element|Object|Boolean} The input node if acceptable, otherwise a falsy value + */ +function testContext( context ) { + return context && typeof context.getElementsByTagName !== strundefined && context; +} + +// Expose support vars for convenience +support = Sizzle.support = {}; + +/** + * Detects XML nodes + * @param {Element|Object} elem An element or a document + * @returns {Boolean} True iff elem is a non-HTML XML node + */ +isXML = Sizzle.isXML = function( elem ) { + // documentElement is verified for cases where it doesn't yet exist + // (such as loading iframes in IE - #4833) + var documentElement = elem && (elem.ownerDocument || elem).documentElement; + return documentElement ? documentElement.nodeName !== "HTML" : false; +}; + +/** + * Sets document-related variables once based on the current document + * @param {Element|Object} [doc] An element or document object to use to set the document + * @returns {Object} Returns the current document + */ +setDocument = Sizzle.setDocument = function( node ) { + var hasCompare, + doc = node ? node.ownerDocument || node : preferredDoc, + parent = doc.defaultView; + + // If no document and documentElement is available, return + if ( doc === document || doc.nodeType !== 9 || !doc.documentElement ) { + return document; + } + + // Set our document + document = doc; + docElem = doc.documentElement; + + // Support tests + documentIsHTML = !isXML( doc ); + + // Support: IE>8 + // If iframe document is assigned to "document" variable and if iframe has been reloaded, + // IE will throw "permission denied" error when accessing "document" variable, see jQuery #13936 + // IE6-8 do not support the defaultView property so parent will be undefined + if ( parent && parent !== parent.top ) { + // IE11 does not have attachEvent, so all must suffer + if ( parent.addEventListener ) { + parent.addEventListener( "unload", function() { + setDocument(); + }, false ); + } else if ( parent.attachEvent ) { + parent.attachEvent( "onunload", function() { + setDocument(); + }); + } + } + + /* Attributes + ---------------------------------------------------------------------- */ + + // Support: IE<8 + // Verify that getAttribute really returns attributes and not properties (excepting IE8 booleans) + support.attributes = assert(function( div ) { + div.className = "i"; + return !div.getAttribute("className"); + }); + + /* getElement(s)By* + ---------------------------------------------------------------------- */ + + // Check if getElementsByTagName("*") returns only elements + support.getElementsByTagName = assert(function( div ) { + div.appendChild( doc.createComment("") ); + return !div.getElementsByTagName("*").length; + }); + + // Check if getElementsByClassName can be trusted + support.getElementsByClassName = rnative.test( doc.getElementsByClassName ) && assert(function( div ) { + div.innerHTML = "
"; + + // Support: Safari<4 + // Catch class over-caching + div.firstChild.className = "i"; + // Support: Opera<10 + // Catch gEBCN failure to find non-leading classes + return div.getElementsByClassName("i").length === 2; + }); + + // Support: IE<10 + // Check if getElementById returns elements by name + // The broken getElementById methods don't pick up programatically-set names, + // so use a roundabout getElementsByName test + support.getById = assert(function( div ) { + docElem.appendChild( div ).id = expando; + return !doc.getElementsByName || !doc.getElementsByName( expando ).length; + }); + + // ID find and filter + if ( support.getById ) { + Expr.find["ID"] = function( id, context ) { + if ( typeof context.getElementById !== strundefined && documentIsHTML ) { + var m = context.getElementById( id ); + // Check parentNode to catch when Blackberry 4.6 returns + // nodes that are no longer in the document #6963 + return m && m.parentNode ? [ m ] : []; + } + }; + Expr.filter["ID"] = function( id ) { + var attrId = id.replace( runescape, funescape ); + return function( elem ) { + return elem.getAttribute("id") === attrId; + }; + }; + } else { + // Support: IE6/7 + // getElementById is not reliable as a find shortcut + delete Expr.find["ID"]; + + Expr.filter["ID"] = function( id ) { + var attrId = id.replace( runescape, funescape ); + return function( elem ) { + var node = typeof elem.getAttributeNode !== strundefined && elem.getAttributeNode("id"); + return node && node.value === attrId; + }; + }; + } + + // Tag + Expr.find["TAG"] = support.getElementsByTagName ? + function( tag, context ) { + if ( typeof context.getElementsByTagName !== strundefined ) { + return context.getElementsByTagName( tag ); + } + } : + function( tag, context ) { + var elem, + tmp = [], + i = 0, + results = context.getElementsByTagName( tag ); + + // Filter out possible comments + if ( tag === "*" ) { + while ( (elem = results[i++]) ) { + if ( elem.nodeType === 1 ) { + tmp.push( elem ); + } + } + + return tmp; + } + return results; + }; + + // Class + Expr.find["CLASS"] = support.getElementsByClassName && function( className, context ) { + if ( typeof context.getElementsByClassName !== strundefined && documentIsHTML ) { + return context.getElementsByClassName( className ); + } + }; + + /* QSA/matchesSelector + ---------------------------------------------------------------------- */ + + // QSA and matchesSelector support + + // matchesSelector(:active) reports false when true (IE9/Opera 11.5) + rbuggyMatches = []; + + // qSa(:focus) reports false when true (Chrome 21) + // We allow this because of a bug in IE8/9 that throws an error + // whenever `document.activeElement` is accessed on an iframe + // So, we allow :focus to pass through QSA all the time to avoid the IE error + // See http://bugs.jquery.com/ticket/13378 + rbuggyQSA = []; + + if ( (support.qsa = rnative.test( doc.querySelectorAll )) ) { + // Build QSA regex + // Regex strategy adopted from Diego Perini + assert(function( div ) { + // Select is set to empty string on purpose + // This is to test IE's treatment of not explicitly + // setting a boolean content attribute, + // since its presence should be enough + // http://bugs.jquery.com/ticket/12359 + div.innerHTML = ""; + + // Support: IE8, Opera 11-12.16 + // Nothing should be selected when empty strings follow ^= or $= or *= + // The test attribute must be unknown in Opera but "safe" for WinRT + // http://msdn.microsoft.com/en-us/library/ie/hh465388.aspx#attribute_section + if ( div.querySelectorAll("[msallowclip^='']").length ) { + rbuggyQSA.push( "[*^$]=" + whitespace + "*(?:''|\"\")" ); + } + + // Support: IE8 + // Boolean attributes and "value" are not treated correctly + if ( !div.querySelectorAll("[selected]").length ) { + rbuggyQSA.push( "\\[" + whitespace + "*(?:value|" + booleans + ")" ); + } + + // Webkit/Opera - :checked should return selected option elements + // http://www.w3.org/TR/2011/REC-css3-selectors-20110929/#checked + // IE8 throws error here and will not see later tests + if ( !div.querySelectorAll(":checked").length ) { + rbuggyQSA.push(":checked"); + } + }); + + assert(function( div ) { + // Support: Windows 8 Native Apps + // The type and name attributes are restricted during .innerHTML assignment + var input = doc.createElement("input"); + input.setAttribute( "type", "hidden" ); + div.appendChild( input ).setAttribute( "name", "D" ); + + // Support: IE8 + // Enforce case-sensitivity of name attribute + if ( div.querySelectorAll("[name=d]").length ) { + rbuggyQSA.push( "name" + whitespace + "*[*^$|!~]?=" ); + } + + // FF 3.5 - :enabled/:disabled and hidden elements (hidden elements are still enabled) + // IE8 throws error here and will not see later tests + if ( !div.querySelectorAll(":enabled").length ) { + rbuggyQSA.push( ":enabled", ":disabled" ); + } + + // Opera 10-11 does not throw on post-comma invalid pseudos + div.querySelectorAll("*,:x"); + rbuggyQSA.push(",.*:"); + }); + } + + if ( (support.matchesSelector = rnative.test( (matches = docElem.matches || + docElem.webkitMatchesSelector || + docElem.mozMatchesSelector || + docElem.oMatchesSelector || + docElem.msMatchesSelector) )) ) { + + assert(function( div ) { + // Check to see if it's possible to do matchesSelector + // on a disconnected node (IE 9) + support.disconnectedMatch = matches.call( div, "div" ); + + // This should fail with an exception + // Gecko does not error, returns false instead + matches.call( div, "[s!='']:x" ); + rbuggyMatches.push( "!=", pseudos ); + }); + } + + rbuggyQSA = rbuggyQSA.length && new RegExp( rbuggyQSA.join("|") ); + rbuggyMatches = rbuggyMatches.length && new RegExp( rbuggyMatches.join("|") ); + + /* Contains + ---------------------------------------------------------------------- */ + hasCompare = rnative.test( docElem.compareDocumentPosition ); + + // Element contains another + // Purposefully does not implement inclusive descendent + // As in, an element does not contain itself + contains = hasCompare || rnative.test( docElem.contains ) ? + function( a, b ) { + var adown = a.nodeType === 9 ? a.documentElement : a, + bup = b && b.parentNode; + return a === bup || !!( bup && bup.nodeType === 1 && ( + adown.contains ? + adown.contains( bup ) : + a.compareDocumentPosition && a.compareDocumentPosition( bup ) & 16 + )); + } : + function( a, b ) { + if ( b ) { + while ( (b = b.parentNode) ) { + if ( b === a ) { + return true; + } + } + } + return false; + }; + + /* Sorting + ---------------------------------------------------------------------- */ + + // Document order sorting + sortOrder = hasCompare ? + function( a, b ) { + + // Flag for duplicate removal + if ( a === b ) { + hasDuplicate = true; + return 0; + } + + // Sort on method existence if only one input has compareDocumentPosition + var compare = !a.compareDocumentPosition - !b.compareDocumentPosition; + if ( compare ) { + return compare; + } + + // Calculate position if both inputs belong to the same document + compare = ( a.ownerDocument || a ) === ( b.ownerDocument || b ) ? + a.compareDocumentPosition( b ) : + + // Otherwise we know they are disconnected + 1; + + // Disconnected nodes + if ( compare & 1 || + (!support.sortDetached && b.compareDocumentPosition( a ) === compare) ) { + + // Choose the first element that is related to our preferred document + if ( a === doc || a.ownerDocument === preferredDoc && contains(preferredDoc, a) ) { + return -1; + } + if ( b === doc || b.ownerDocument === preferredDoc && contains(preferredDoc, b) ) { + return 1; + } + + // Maintain original order + return sortInput ? + ( indexOf.call( sortInput, a ) - indexOf.call( sortInput, b ) ) : + 0; + } + + return compare & 4 ? -1 : 1; + } : + function( a, b ) { + // Exit early if the nodes are identical + if ( a === b ) { + hasDuplicate = true; + return 0; + } + + var cur, + i = 0, + aup = a.parentNode, + bup = b.parentNode, + ap = [ a ], + bp = [ b ]; + + // Parentless nodes are either documents or disconnected + if ( !aup || !bup ) { + return a === doc ? -1 : + b === doc ? 1 : + aup ? -1 : + bup ? 1 : + sortInput ? + ( indexOf.call( sortInput, a ) - indexOf.call( sortInput, b ) ) : + 0; + + // If the nodes are siblings, we can do a quick check + } else if ( aup === bup ) { + return siblingCheck( a, b ); + } + + // Otherwise we need full lists of their ancestors for comparison + cur = a; + while ( (cur = cur.parentNode) ) { + ap.unshift( cur ); + } + cur = b; + while ( (cur = cur.parentNode) ) { + bp.unshift( cur ); + } + + // Walk down the tree looking for a discrepancy + while ( ap[i] === bp[i] ) { + i++; + } + + return i ? + // Do a sibling check if the nodes have a common ancestor + siblingCheck( ap[i], bp[i] ) : + + // Otherwise nodes in our document sort first + ap[i] === preferredDoc ? -1 : + bp[i] === preferredDoc ? 1 : + 0; + }; + + return doc; +}; + +Sizzle.matches = function( expr, elements ) { + return Sizzle( expr, null, null, elements ); +}; + +Sizzle.matchesSelector = function( elem, expr ) { + // Set document vars if needed + if ( ( elem.ownerDocument || elem ) !== document ) { + setDocument( elem ); + } + + // Make sure that attribute selectors are quoted + expr = expr.replace( rattributeQuotes, "='$1']" ); + + if ( support.matchesSelector && documentIsHTML && + ( !rbuggyMatches || !rbuggyMatches.test( expr ) ) && + ( !rbuggyQSA || !rbuggyQSA.test( expr ) ) ) { + + try { + var ret = matches.call( elem, expr ); + + // IE 9's matchesSelector returns false on disconnected nodes + if ( ret || support.disconnectedMatch || + // As well, disconnected nodes are said to be in a document + // fragment in IE 9 + elem.document && elem.document.nodeType !== 11 ) { + return ret; + } + } catch(e) {} + } + + return Sizzle( expr, document, null, [ elem ] ).length > 0; +}; + +Sizzle.contains = function( context, elem ) { + // Set document vars if needed + if ( ( context.ownerDocument || context ) !== document ) { + setDocument( context ); + } + return contains( context, elem ); +}; + +Sizzle.attr = function( elem, name ) { + // Set document vars if needed + if ( ( elem.ownerDocument || elem ) !== document ) { + setDocument( elem ); + } + + var fn = Expr.attrHandle[ name.toLowerCase() ], + // Don't get fooled by Object.prototype properties (jQuery #13807) + val = fn && hasOwn.call( Expr.attrHandle, name.toLowerCase() ) ? + fn( elem, name, !documentIsHTML ) : + undefined; + + return val !== undefined ? + val : + support.attributes || !documentIsHTML ? + elem.getAttribute( name ) : + (val = elem.getAttributeNode(name)) && val.specified ? + val.value : + null; +}; + +Sizzle.error = function( msg ) { + throw new Error( "Syntax error, unrecognized expression: " + msg ); +}; + +/** + * Document sorting and removing duplicates + * @param {ArrayLike} results + */ +Sizzle.uniqueSort = function( results ) { + var elem, + duplicates = [], + j = 0, + i = 0; + + // Unless we *know* we can detect duplicates, assume their presence + hasDuplicate = !support.detectDuplicates; + sortInput = !support.sortStable && results.slice( 0 ); + results.sort( sortOrder ); + + if ( hasDuplicate ) { + while ( (elem = results[i++]) ) { + if ( elem === results[ i ] ) { + j = duplicates.push( i ); + } + } + while ( j-- ) { + results.splice( duplicates[ j ], 1 ); + } + } + + // Clear input after sorting to release objects + // See https://github.com/jquery/sizzle/pull/225 + sortInput = null; + + return results; +}; + +/** + * Utility function for retrieving the text value of an array of DOM nodes + * @param {Array|Element} elem + */ +getText = Sizzle.getText = function( elem ) { + var node, + ret = "", + i = 0, + nodeType = elem.nodeType; + + if ( !nodeType ) { + // If no nodeType, this is expected to be an array + while ( (node = elem[i++]) ) { + // Do not traverse comment nodes + ret += getText( node ); + } + } else if ( nodeType === 1 || nodeType === 9 || nodeType === 11 ) { + // Use textContent for elements + // innerText usage removed for consistency of new lines (jQuery #11153) + if ( typeof elem.textContent === "string" ) { + return elem.textContent; + } else { + // Traverse its children + for ( elem = elem.firstChild; elem; elem = elem.nextSibling ) { + ret += getText( elem ); + } + } + } else if ( nodeType === 3 || nodeType === 4 ) { + return elem.nodeValue; + } + // Do not include comment or processing instruction nodes + + return ret; +}; + +Expr = Sizzle.selectors = { + + // Can be adjusted by the user + cacheLength: 50, + + createPseudo: markFunction, + + match: matchExpr, + + attrHandle: {}, + + find: {}, + + relative: { + ">": { dir: "parentNode", first: true }, + " ": { dir: "parentNode" }, + "+": { dir: "previousSibling", first: true }, + "~": { dir: "previousSibling" } + }, + + preFilter: { + "ATTR": function( match ) { + match[1] = match[1].replace( runescape, funescape ); + + // Move the given value to match[3] whether quoted or unquoted + match[3] = ( match[3] || match[4] || match[5] || "" ).replace( runescape, funescape ); + + if ( match[2] === "~=" ) { + match[3] = " " + match[3] + " "; + } + + return match.slice( 0, 4 ); + }, + + "CHILD": function( match ) { + /* matches from matchExpr["CHILD"] + 1 type (only|nth|...) + 2 what (child|of-type) + 3 argument (even|odd|\d*|\d*n([+-]\d+)?|...) + 4 xn-component of xn+y argument ([+-]?\d*n|) + 5 sign of xn-component + 6 x of xn-component + 7 sign of y-component + 8 y of y-component + */ + match[1] = match[1].toLowerCase(); + + if ( match[1].slice( 0, 3 ) === "nth" ) { + // nth-* requires argument + if ( !match[3] ) { + Sizzle.error( match[0] ); + } + + // numeric x and y parameters for Expr.filter.CHILD + // remember that false/true cast respectively to 0/1 + match[4] = +( match[4] ? match[5] + (match[6] || 1) : 2 * ( match[3] === "even" || match[3] === "odd" ) ); + match[5] = +( ( match[7] + match[8] ) || match[3] === "odd" ); + + // other types prohibit arguments + } else if ( match[3] ) { + Sizzle.error( match[0] ); + } + + return match; + }, + + "PSEUDO": function( match ) { + var excess, + unquoted = !match[6] && match[2]; + + if ( matchExpr["CHILD"].test( match[0] ) ) { + return null; + } + + // Accept quoted arguments as-is + if ( match[3] ) { + match[2] = match[4] || match[5] || ""; + + // Strip excess characters from unquoted arguments + } else if ( unquoted && rpseudo.test( unquoted ) && + // Get excess from tokenize (recursively) + (excess = tokenize( unquoted, true )) && + // advance to the next closing parenthesis + (excess = unquoted.indexOf( ")", unquoted.length - excess ) - unquoted.length) ) { + + // excess is a negative index + match[0] = match[0].slice( 0, excess ); + match[2] = unquoted.slice( 0, excess ); + } + + // Return only captures needed by the pseudo filter method (type and argument) + return match.slice( 0, 3 ); + } + }, + + filter: { + + "TAG": function( nodeNameSelector ) { + var nodeName = nodeNameSelector.replace( runescape, funescape ).toLowerCase(); + return nodeNameSelector === "*" ? + function() { return true; } : + function( elem ) { + return elem.nodeName && elem.nodeName.toLowerCase() === nodeName; + }; + }, + + "CLASS": function( className ) { + var pattern = classCache[ className + " " ]; + + return pattern || + (pattern = new RegExp( "(^|" + whitespace + ")" + className + "(" + whitespace + "|$)" )) && + classCache( className, function( elem ) { + return pattern.test( typeof elem.className === "string" && elem.className || typeof elem.getAttribute !== strundefined && elem.getAttribute("class") || "" ); + }); + }, + + "ATTR": function( name, operator, check ) { + return function( elem ) { + var result = Sizzle.attr( elem, name ); + + if ( result == null ) { + return operator === "!="; + } + if ( !operator ) { + return true; + } + + result += ""; + + return operator === "=" ? result === check : + operator === "!=" ? result !== check : + operator === "^=" ? check && result.indexOf( check ) === 0 : + operator === "*=" ? check && result.indexOf( check ) > -1 : + operator === "$=" ? check && result.slice( -check.length ) === check : + operator === "~=" ? ( " " + result + " " ).indexOf( check ) > -1 : + operator === "|=" ? result === check || result.slice( 0, check.length + 1 ) === check + "-" : + false; + }; + }, + + "CHILD": function( type, what, argument, first, last ) { + var simple = type.slice( 0, 3 ) !== "nth", + forward = type.slice( -4 ) !== "last", + ofType = what === "of-type"; + + return first === 1 && last === 0 ? + + // Shortcut for :nth-*(n) + function( elem ) { + return !!elem.parentNode; + } : + + function( elem, context, xml ) { + var cache, outerCache, node, diff, nodeIndex, start, + dir = simple !== forward ? "nextSibling" : "previousSibling", + parent = elem.parentNode, + name = ofType && elem.nodeName.toLowerCase(), + useCache = !xml && !ofType; + + if ( parent ) { + + // :(first|last|only)-(child|of-type) + if ( simple ) { + while ( dir ) { + node = elem; + while ( (node = node[ dir ]) ) { + if ( ofType ? node.nodeName.toLowerCase() === name : node.nodeType === 1 ) { + return false; + } + } + // Reverse direction for :only-* (if we haven't yet done so) + start = dir = type === "only" && !start && "nextSibling"; + } + return true; + } + + start = [ forward ? parent.firstChild : parent.lastChild ]; + + // non-xml :nth-child(...) stores cache data on `parent` + if ( forward && useCache ) { + // Seek `elem` from a previously-cached index + outerCache = parent[ expando ] || (parent[ expando ] = {}); + cache = outerCache[ type ] || []; + nodeIndex = cache[0] === dirruns && cache[1]; + diff = cache[0] === dirruns && cache[2]; + node = nodeIndex && parent.childNodes[ nodeIndex ]; + + while ( (node = ++nodeIndex && node && node[ dir ] || + + // Fallback to seeking `elem` from the start + (diff = nodeIndex = 0) || start.pop()) ) { + + // When found, cache indexes on `parent` and break + if ( node.nodeType === 1 && ++diff && node === elem ) { + outerCache[ type ] = [ dirruns, nodeIndex, diff ]; + break; + } + } + + // Use previously-cached element index if available + } else if ( useCache && (cache = (elem[ expando ] || (elem[ expando ] = {}))[ type ]) && cache[0] === dirruns ) { + diff = cache[1]; + + // xml :nth-child(...) or :nth-last-child(...) or :nth(-last)?-of-type(...) + } else { + // Use the same loop as above to seek `elem` from the start + while ( (node = ++nodeIndex && node && node[ dir ] || + (diff = nodeIndex = 0) || start.pop()) ) { + + if ( ( ofType ? node.nodeName.toLowerCase() === name : node.nodeType === 1 ) && ++diff ) { + // Cache the index of each encountered element + if ( useCache ) { + (node[ expando ] || (node[ expando ] = {}))[ type ] = [ dirruns, diff ]; + } + + if ( node === elem ) { + break; + } + } + } + } + + // Incorporate the offset, then check against cycle size + diff -= last; + return diff === first || ( diff % first === 0 && diff / first >= 0 ); + } + }; + }, + + "PSEUDO": function( pseudo, argument ) { + // pseudo-class names are case-insensitive + // http://www.w3.org/TR/selectors/#pseudo-classes + // Prioritize by case sensitivity in case custom pseudos are added with uppercase letters + // Remember that setFilters inherits from pseudos + var args, + fn = Expr.pseudos[ pseudo ] || Expr.setFilters[ pseudo.toLowerCase() ] || + Sizzle.error( "unsupported pseudo: " + pseudo ); + + // The user may use createPseudo to indicate that + // arguments are needed to create the filter function + // just as Sizzle does + if ( fn[ expando ] ) { + return fn( argument ); + } + + // But maintain support for old signatures + if ( fn.length > 1 ) { + args = [ pseudo, pseudo, "", argument ]; + return Expr.setFilters.hasOwnProperty( pseudo.toLowerCase() ) ? + markFunction(function( seed, matches ) { + var idx, + matched = fn( seed, argument ), + i = matched.length; + while ( i-- ) { + idx = indexOf.call( seed, matched[i] ); + seed[ idx ] = !( matches[ idx ] = matched[i] ); + } + }) : + function( elem ) { + return fn( elem, 0, args ); + }; + } + + return fn; + } + }, + + pseudos: { + // Potentially complex pseudos + "not": markFunction(function( selector ) { + // Trim the selector passed to compile + // to avoid treating leading and trailing + // spaces as combinators + var input = [], + results = [], + matcher = compile( selector.replace( rtrim, "$1" ) ); + + return matcher[ expando ] ? + markFunction(function( seed, matches, context, xml ) { + var elem, + unmatched = matcher( seed, null, xml, [] ), + i = seed.length; + + // Match elements unmatched by `matcher` + while ( i-- ) { + if ( (elem = unmatched[i]) ) { + seed[i] = !(matches[i] = elem); + } + } + }) : + function( elem, context, xml ) { + input[0] = elem; + matcher( input, null, xml, results ); + return !results.pop(); + }; + }), + + "has": markFunction(function( selector ) { + return function( elem ) { + return Sizzle( selector, elem ).length > 0; + }; + }), + + "contains": markFunction(function( text ) { + return function( elem ) { + return ( elem.textContent || elem.innerText || getText( elem ) ).indexOf( text ) > -1; + }; + }), + + // "Whether an element is represented by a :lang() selector + // is based solely on the element's language value + // being equal to the identifier C, + // or beginning with the identifier C immediately followed by "-". + // The matching of C against the element's language value is performed case-insensitively. + // The identifier C does not have to be a valid language name." + // http://www.w3.org/TR/selectors/#lang-pseudo + "lang": markFunction( function( lang ) { + // lang value must be a valid identifier + if ( !ridentifier.test(lang || "") ) { + Sizzle.error( "unsupported lang: " + lang ); + } + lang = lang.replace( runescape, funescape ).toLowerCase(); + return function( elem ) { + var elemLang; + do { + if ( (elemLang = documentIsHTML ? + elem.lang : + elem.getAttribute("xml:lang") || elem.getAttribute("lang")) ) { + + elemLang = elemLang.toLowerCase(); + return elemLang === lang || elemLang.indexOf( lang + "-" ) === 0; + } + } while ( (elem = elem.parentNode) && elem.nodeType === 1 ); + return false; + }; + }), + + // Miscellaneous + "target": function( elem ) { + var hash = window.location && window.location.hash; + return hash && hash.slice( 1 ) === elem.id; + }, + + "root": function( elem ) { + return elem === docElem; + }, + + "focus": function( elem ) { + return elem === document.activeElement && (!document.hasFocus || document.hasFocus()) && !!(elem.type || elem.href || ~elem.tabIndex); + }, + + // Boolean properties + "enabled": function( elem ) { + return elem.disabled === false; + }, + + "disabled": function( elem ) { + return elem.disabled === true; + }, + + "checked": function( elem ) { + // In CSS3, :checked should return both checked and selected elements + // http://www.w3.org/TR/2011/REC-css3-selectors-20110929/#checked + var nodeName = elem.nodeName.toLowerCase(); + return (nodeName === "input" && !!elem.checked) || (nodeName === "option" && !!elem.selected); + }, + + "selected": function( elem ) { + // Accessing this property makes selected-by-default + // options in Safari work properly + if ( elem.parentNode ) { + elem.parentNode.selectedIndex; + } + + return elem.selected === true; + }, + + // Contents + "empty": function( elem ) { + // http://www.w3.org/TR/selectors/#empty-pseudo + // :empty is negated by element (1) or content nodes (text: 3; cdata: 4; entity ref: 5), + // but not by others (comment: 8; processing instruction: 7; etc.) + // nodeType < 6 works because attributes (2) do not appear as children + for ( elem = elem.firstChild; elem; elem = elem.nextSibling ) { + if ( elem.nodeType < 6 ) { + return false; + } + } + return true; + }, + + "parent": function( elem ) { + return !Expr.pseudos["empty"]( elem ); + }, + + // Element/input types + "header": function( elem ) { + return rheader.test( elem.nodeName ); + }, + + "input": function( elem ) { + return rinputs.test( elem.nodeName ); + }, + + "button": function( elem ) { + var name = elem.nodeName.toLowerCase(); + return name === "input" && elem.type === "button" || name === "button"; + }, + + "text": function( elem ) { + var attr; + return elem.nodeName.toLowerCase() === "input" && + elem.type === "text" && + + // Support: IE<8 + // New HTML5 attribute values (e.g., "search") appear with elem.type === "text" + ( (attr = elem.getAttribute("type")) == null || attr.toLowerCase() === "text" ); + }, + + // Position-in-collection + "first": createPositionalPseudo(function() { + return [ 0 ]; + }), + + "last": createPositionalPseudo(function( matchIndexes, length ) { + return [ length - 1 ]; + }), + + "eq": createPositionalPseudo(function( matchIndexes, length, argument ) { + return [ argument < 0 ? argument + length : argument ]; + }), + + "even": createPositionalPseudo(function( matchIndexes, length ) { + var i = 0; + for ( ; i < length; i += 2 ) { + matchIndexes.push( i ); + } + return matchIndexes; + }), + + "odd": createPositionalPseudo(function( matchIndexes, length ) { + var i = 1; + for ( ; i < length; i += 2 ) { + matchIndexes.push( i ); + } + return matchIndexes; + }), + + "lt": createPositionalPseudo(function( matchIndexes, length, argument ) { + var i = argument < 0 ? argument + length : argument; + for ( ; --i >= 0; ) { + matchIndexes.push( i ); + } + return matchIndexes; + }), + + "gt": createPositionalPseudo(function( matchIndexes, length, argument ) { + var i = argument < 0 ? argument + length : argument; + for ( ; ++i < length; ) { + matchIndexes.push( i ); + } + return matchIndexes; + }) + } +}; + +Expr.pseudos["nth"] = Expr.pseudos["eq"]; + +// Add button/input type pseudos +for ( i in { radio: true, checkbox: true, file: true, password: true, image: true } ) { + Expr.pseudos[ i ] = createInputPseudo( i ); +} +for ( i in { submit: true, reset: true } ) { + Expr.pseudos[ i ] = createButtonPseudo( i ); +} + +// Easy API for creating new setFilters +function setFilters() {} +setFilters.prototype = Expr.filters = Expr.pseudos; +Expr.setFilters = new setFilters(); + +tokenize = Sizzle.tokenize = function( selector, parseOnly ) { + var matched, match, tokens, type, + soFar, groups, preFilters, + cached = tokenCache[ selector + " " ]; + + if ( cached ) { + return parseOnly ? 0 : cached.slice( 0 ); + } + + soFar = selector; + groups = []; + preFilters = Expr.preFilter; + + while ( soFar ) { + + // Comma and first run + if ( !matched || (match = rcomma.exec( soFar )) ) { + if ( match ) { + // Don't consume trailing commas as valid + soFar = soFar.slice( match[0].length ) || soFar; + } + groups.push( (tokens = []) ); + } + + matched = false; + + // Combinators + if ( (match = rcombinators.exec( soFar )) ) { + matched = match.shift(); + tokens.push({ + value: matched, + // Cast descendant combinators to space + type: match[0].replace( rtrim, " " ) + }); + soFar = soFar.slice( matched.length ); + } + + // Filters + for ( type in Expr.filter ) { + if ( (match = matchExpr[ type ].exec( soFar )) && (!preFilters[ type ] || + (match = preFilters[ type ]( match ))) ) { + matched = match.shift(); + tokens.push({ + value: matched, + type: type, + matches: match + }); + soFar = soFar.slice( matched.length ); + } + } + + if ( !matched ) { + break; + } + } + + // Return the length of the invalid excess + // if we're just parsing + // Otherwise, throw an error or return tokens + return parseOnly ? + soFar.length : + soFar ? + Sizzle.error( selector ) : + // Cache the tokens + tokenCache( selector, groups ).slice( 0 ); +}; + +function toSelector( tokens ) { + var i = 0, + len = tokens.length, + selector = ""; + for ( ; i < len; i++ ) { + selector += tokens[i].value; + } + return selector; +} + +function addCombinator( matcher, combinator, base ) { + var dir = combinator.dir, + checkNonElements = base && dir === "parentNode", + doneName = done++; + + return combinator.first ? + // Check against closest ancestor/preceding element + function( elem, context, xml ) { + while ( (elem = elem[ dir ]) ) { + if ( elem.nodeType === 1 || checkNonElements ) { + return matcher( elem, context, xml ); + } + } + } : + + // Check against all ancestor/preceding elements + function( elem, context, xml ) { + var oldCache, outerCache, + newCache = [ dirruns, doneName ]; + + // We can't set arbitrary data on XML nodes, so they don't benefit from dir caching + if ( xml ) { + while ( (elem = elem[ dir ]) ) { + if ( elem.nodeType === 1 || checkNonElements ) { + if ( matcher( elem, context, xml ) ) { + return true; + } + } + } + } else { + while ( (elem = elem[ dir ]) ) { + if ( elem.nodeType === 1 || checkNonElements ) { + outerCache = elem[ expando ] || (elem[ expando ] = {}); + if ( (oldCache = outerCache[ dir ]) && + oldCache[ 0 ] === dirruns && oldCache[ 1 ] === doneName ) { + + // Assign to newCache so results back-propagate to previous elements + return (newCache[ 2 ] = oldCache[ 2 ]); + } else { + // Reuse newcache so results back-propagate to previous elements + outerCache[ dir ] = newCache; + + // A match means we're done; a fail means we have to keep checking + if ( (newCache[ 2 ] = matcher( elem, context, xml )) ) { + return true; + } + } + } + } + } + }; +} + +function elementMatcher( matchers ) { + return matchers.length > 1 ? + function( elem, context, xml ) { + var i = matchers.length; + while ( i-- ) { + if ( !matchers[i]( elem, context, xml ) ) { + return false; + } + } + return true; + } : + matchers[0]; +} + +function multipleContexts( selector, contexts, results ) { + var i = 0, + len = contexts.length; + for ( ; i < len; i++ ) { + Sizzle( selector, contexts[i], results ); + } + return results; +} + +function condense( unmatched, map, filter, context, xml ) { + var elem, + newUnmatched = [], + i = 0, + len = unmatched.length, + mapped = map != null; + + for ( ; i < len; i++ ) { + if ( (elem = unmatched[i]) ) { + if ( !filter || filter( elem, context, xml ) ) { + newUnmatched.push( elem ); + if ( mapped ) { + map.push( i ); + } + } + } + } + + return newUnmatched; +} + +function setMatcher( preFilter, selector, matcher, postFilter, postFinder, postSelector ) { + if ( postFilter && !postFilter[ expando ] ) { + postFilter = setMatcher( postFilter ); + } + if ( postFinder && !postFinder[ expando ] ) { + postFinder = setMatcher( postFinder, postSelector ); + } + return markFunction(function( seed, results, context, xml ) { + var temp, i, elem, + preMap = [], + postMap = [], + preexisting = results.length, + + // Get initial elements from seed or context + elems = seed || multipleContexts( selector || "*", context.nodeType ? [ context ] : context, [] ), + + // Prefilter to get matcher input, preserving a map for seed-results synchronization + matcherIn = preFilter && ( seed || !selector ) ? + condense( elems, preMap, preFilter, context, xml ) : + elems, + + matcherOut = matcher ? + // If we have a postFinder, or filtered seed, or non-seed postFilter or preexisting results, + postFinder || ( seed ? preFilter : preexisting || postFilter ) ? + + // ...intermediate processing is necessary + [] : + + // ...otherwise use results directly + results : + matcherIn; + + // Find primary matches + if ( matcher ) { + matcher( matcherIn, matcherOut, context, xml ); + } + + // Apply postFilter + if ( postFilter ) { + temp = condense( matcherOut, postMap ); + postFilter( temp, [], context, xml ); + + // Un-match failing elements by moving them back to matcherIn + i = temp.length; + while ( i-- ) { + if ( (elem = temp[i]) ) { + matcherOut[ postMap[i] ] = !(matcherIn[ postMap[i] ] = elem); + } + } + } + + if ( seed ) { + if ( postFinder || preFilter ) { + if ( postFinder ) { + // Get the final matcherOut by condensing this intermediate into postFinder contexts + temp = []; + i = matcherOut.length; + while ( i-- ) { + if ( (elem = matcherOut[i]) ) { + // Restore matcherIn since elem is not yet a final match + temp.push( (matcherIn[i] = elem) ); + } + } + postFinder( null, (matcherOut = []), temp, xml ); + } + + // Move matched elements from seed to results to keep them synchronized + i = matcherOut.length; + while ( i-- ) { + if ( (elem = matcherOut[i]) && + (temp = postFinder ? indexOf.call( seed, elem ) : preMap[i]) > -1 ) { + + seed[temp] = !(results[temp] = elem); + } + } + } + + // Add elements to results, through postFinder if defined + } else { + matcherOut = condense( + matcherOut === results ? + matcherOut.splice( preexisting, matcherOut.length ) : + matcherOut + ); + if ( postFinder ) { + postFinder( null, results, matcherOut, xml ); + } else { + push.apply( results, matcherOut ); + } + } + }); +} + +function matcherFromTokens( tokens ) { + var checkContext, matcher, j, + len = tokens.length, + leadingRelative = Expr.relative[ tokens[0].type ], + implicitRelative = leadingRelative || Expr.relative[" "], + i = leadingRelative ? 1 : 0, + + // The foundational matcher ensures that elements are reachable from top-level context(s) + matchContext = addCombinator( function( elem ) { + return elem === checkContext; + }, implicitRelative, true ), + matchAnyContext = addCombinator( function( elem ) { + return indexOf.call( checkContext, elem ) > -1; + }, implicitRelative, true ), + matchers = [ function( elem, context, xml ) { + return ( !leadingRelative && ( xml || context !== outermostContext ) ) || ( + (checkContext = context).nodeType ? + matchContext( elem, context, xml ) : + matchAnyContext( elem, context, xml ) ); + } ]; + + for ( ; i < len; i++ ) { + if ( (matcher = Expr.relative[ tokens[i].type ]) ) { + matchers = [ addCombinator(elementMatcher( matchers ), matcher) ]; + } else { + matcher = Expr.filter[ tokens[i].type ].apply( null, tokens[i].matches ); + + // Return special upon seeing a positional matcher + if ( matcher[ expando ] ) { + // Find the next relative operator (if any) for proper handling + j = ++i; + for ( ; j < len; j++ ) { + if ( Expr.relative[ tokens[j].type ] ) { + break; + } + } + return setMatcher( + i > 1 && elementMatcher( matchers ), + i > 1 && toSelector( + // If the preceding token was a descendant combinator, insert an implicit any-element `*` + tokens.slice( 0, i - 1 ).concat({ value: tokens[ i - 2 ].type === " " ? "*" : "" }) + ).replace( rtrim, "$1" ), + matcher, + i < j && matcherFromTokens( tokens.slice( i, j ) ), + j < len && matcherFromTokens( (tokens = tokens.slice( j )) ), + j < len && toSelector( tokens ) + ); + } + matchers.push( matcher ); + } + } + + return elementMatcher( matchers ); +} + +function matcherFromGroupMatchers( elementMatchers, setMatchers ) { + var bySet = setMatchers.length > 0, + byElement = elementMatchers.length > 0, + superMatcher = function( seed, context, xml, results, outermost ) { + var elem, j, matcher, + matchedCount = 0, + i = "0", + unmatched = seed && [], + setMatched = [], + contextBackup = outermostContext, + // We must always have either seed elements or outermost context + elems = seed || byElement && Expr.find["TAG"]( "*", outermost ), + // Use integer dirruns iff this is the outermost matcher + dirrunsUnique = (dirruns += contextBackup == null ? 1 : Math.random() || 0.1), + len = elems.length; + + if ( outermost ) { + outermostContext = context !== document && context; + } + + // Add elements passing elementMatchers directly to results + // Keep `i` a string if there are no elements so `matchedCount` will be "00" below + // Support: IE<9, Safari + // Tolerate NodeList properties (IE: "length"; Safari: ) matching elements by id + for ( ; i !== len && (elem = elems[i]) != null; i++ ) { + if ( byElement && elem ) { + j = 0; + while ( (matcher = elementMatchers[j++]) ) { + if ( matcher( elem, context, xml ) ) { + results.push( elem ); + break; + } + } + if ( outermost ) { + dirruns = dirrunsUnique; + } + } + + // Track unmatched elements for set filters + if ( bySet ) { + // They will have gone through all possible matchers + if ( (elem = !matcher && elem) ) { + matchedCount--; + } + + // Lengthen the array for every element, matched or not + if ( seed ) { + unmatched.push( elem ); + } + } + } + + // Apply set filters to unmatched elements + matchedCount += i; + if ( bySet && i !== matchedCount ) { + j = 0; + while ( (matcher = setMatchers[j++]) ) { + matcher( unmatched, setMatched, context, xml ); + } + + if ( seed ) { + // Reintegrate element matches to eliminate the need for sorting + if ( matchedCount > 0 ) { + while ( i-- ) { + if ( !(unmatched[i] || setMatched[i]) ) { + setMatched[i] = pop.call( results ); + } + } + } + + // Discard index placeholder values to get only actual matches + setMatched = condense( setMatched ); + } + + // Add matches to results + push.apply( results, setMatched ); + + // Seedless set matches succeeding multiple successful matchers stipulate sorting + if ( outermost && !seed && setMatched.length > 0 && + ( matchedCount + setMatchers.length ) > 1 ) { + + Sizzle.uniqueSort( results ); + } + } + + // Override manipulation of globals by nested matchers + if ( outermost ) { + dirruns = dirrunsUnique; + outermostContext = contextBackup; + } + + return unmatched; + }; + + return bySet ? + markFunction( superMatcher ) : + superMatcher; +} + +compile = Sizzle.compile = function( selector, match /* Internal Use Only */ ) { + var i, + setMatchers = [], + elementMatchers = [], + cached = compilerCache[ selector + " " ]; + + if ( !cached ) { + // Generate a function of recursive functions that can be used to check each element + if ( !match ) { + match = tokenize( selector ); + } + i = match.length; + while ( i-- ) { + cached = matcherFromTokens( match[i] ); + if ( cached[ expando ] ) { + setMatchers.push( cached ); + } else { + elementMatchers.push( cached ); + } + } + + // Cache the compiled function + cached = compilerCache( selector, matcherFromGroupMatchers( elementMatchers, setMatchers ) ); + + // Save selector and tokenization + cached.selector = selector; + } + return cached; +}; + +/** + * A low-level selection function that works with Sizzle's compiled + * selector functions + * @param {String|Function} selector A selector or a pre-compiled + * selector function built with Sizzle.compile + * @param {Element} context + * @param {Array} [results] + * @param {Array} [seed] A set of elements to match against + */ +select = Sizzle.select = function( selector, context, results, seed ) { + var i, tokens, token, type, find, + compiled = typeof selector === "function" && selector, + match = !seed && tokenize( (selector = compiled.selector || selector) ); + + results = results || []; + + // Try to minimize operations if there is no seed and only one group + if ( match.length === 1 ) { + + // Take a shortcut and set the context if the root selector is an ID + tokens = match[0] = match[0].slice( 0 ); + if ( tokens.length > 2 && (token = tokens[0]).type === "ID" && + support.getById && context.nodeType === 9 && documentIsHTML && + Expr.relative[ tokens[1].type ] ) { + + context = ( Expr.find["ID"]( token.matches[0].replace(runescape, funescape), context ) || [] )[0]; + if ( !context ) { + return results; + + // Precompiled matchers will still verify ancestry, so step up a level + } else if ( compiled ) { + context = context.parentNode; + } + + selector = selector.slice( tokens.shift().value.length ); + } + + // Fetch a seed set for right-to-left matching + i = matchExpr["needsContext"].test( selector ) ? 0 : tokens.length; + while ( i-- ) { + token = tokens[i]; + + // Abort if we hit a combinator + if ( Expr.relative[ (type = token.type) ] ) { + break; + } + if ( (find = Expr.find[ type ]) ) { + // Search, expanding context for leading sibling combinators + if ( (seed = find( + token.matches[0].replace( runescape, funescape ), + rsibling.test( tokens[0].type ) && testContext( context.parentNode ) || context + )) ) { + + // If seed is empty or no tokens remain, we can return early + tokens.splice( i, 1 ); + selector = seed.length && toSelector( tokens ); + if ( !selector ) { + push.apply( results, seed ); + return results; + } + + break; + } + } + } + } + + // Compile and execute a filtering function if one is not provided + // Provide `match` to avoid retokenization if we modified the selector above + ( compiled || compile( selector, match ) )( + seed, + context, + !documentIsHTML, + results, + rsibling.test( selector ) && testContext( context.parentNode ) || context + ); + return results; +}; + +// One-time assignments + +// Sort stability +support.sortStable = expando.split("").sort( sortOrder ).join("") === expando; + +// Support: Chrome<14 +// Always assume duplicates if they aren't passed to the comparison function +support.detectDuplicates = !!hasDuplicate; + +// Initialize against the default document +setDocument(); + +// Support: Webkit<537.32 - Safari 6.0.3/Chrome 25 (fixed in Chrome 27) +// Detached nodes confoundingly follow *each other* +support.sortDetached = assert(function( div1 ) { + // Should return 1, but returns 4 (following) + return div1.compareDocumentPosition( document.createElement("div") ) & 1; +}); + +// Support: IE<8 +// Prevent attribute/property "interpolation" +// http://msdn.microsoft.com/en-us/library/ms536429%28VS.85%29.aspx +if ( !assert(function( div ) { + div.innerHTML = ""; + return div.firstChild.getAttribute("href") === "#" ; +}) ) { + addHandle( "type|href|height|width", function( elem, name, isXML ) { + if ( !isXML ) { + return elem.getAttribute( name, name.toLowerCase() === "type" ? 1 : 2 ); + } + }); +} + +// Support: IE<9 +// Use defaultValue in place of getAttribute("value") +if ( !support.attributes || !assert(function( div ) { + div.innerHTML = ""; + div.firstChild.setAttribute( "value", "" ); + return div.firstChild.getAttribute( "value" ) === ""; +}) ) { + addHandle( "value", function( elem, name, isXML ) { + if ( !isXML && elem.nodeName.toLowerCase() === "input" ) { + return elem.defaultValue; + } + }); +} + +// Support: IE<9 +// Use getAttributeNode to fetch booleans when getAttribute lies +if ( !assert(function( div ) { + return div.getAttribute("disabled") == null; +}) ) { + addHandle( booleans, function( elem, name, isXML ) { + var val; + if ( !isXML ) { + return elem[ name ] === true ? name.toLowerCase() : + (val = elem.getAttributeNode( name )) && val.specified ? + val.value : + null; + } + }); +} + +return Sizzle; + +})( window ); + + + +jQuery.find = Sizzle; +jQuery.expr = Sizzle.selectors; +jQuery.expr[":"] = jQuery.expr.pseudos; +jQuery.unique = Sizzle.uniqueSort; +jQuery.text = Sizzle.getText; +jQuery.isXMLDoc = Sizzle.isXML; +jQuery.contains = Sizzle.contains; + + + +var rneedsContext = jQuery.expr.match.needsContext; + +var rsingleTag = (/^<(\w+)\s*\/?>(?:<\/\1>|)$/); + + + +var risSimple = /^.[^:#\[\.,]*$/; + +// Implement the identical functionality for filter and not +function winnow( elements, qualifier, not ) { + if ( jQuery.isFunction( qualifier ) ) { + return jQuery.grep( elements, function( elem, i ) { + /* jshint -W018 */ + return !!qualifier.call( elem, i, elem ) !== not; + }); + + } + + if ( qualifier.nodeType ) { + return jQuery.grep( elements, function( elem ) { + return ( elem === qualifier ) !== not; + }); + + } + + if ( typeof qualifier === "string" ) { + if ( risSimple.test( qualifier ) ) { + return jQuery.filter( qualifier, elements, not ); + } + + qualifier = jQuery.filter( qualifier, elements ); + } + + return jQuery.grep( elements, function( elem ) { + return ( jQuery.inArray( elem, qualifier ) >= 0 ) !== not; + }); +} + +jQuery.filter = function( expr, elems, not ) { + var elem = elems[ 0 ]; + + if ( not ) { + expr = ":not(" + expr + ")"; + } + + return elems.length === 1 && elem.nodeType === 1 ? + jQuery.find.matchesSelector( elem, expr ) ? [ elem ] : [] : + jQuery.find.matches( expr, jQuery.grep( elems, function( elem ) { + return elem.nodeType === 1; + })); +}; + +jQuery.fn.extend({ + find: function( selector ) { + var i, + ret = [], + self = this, + len = self.length; + + if ( typeof selector !== "string" ) { + return this.pushStack( jQuery( selector ).filter(function() { + for ( i = 0; i < len; i++ ) { + if ( jQuery.contains( self[ i ], this ) ) { + return true; + } + } + }) ); + } + + for ( i = 0; i < len; i++ ) { + jQuery.find( selector, self[ i ], ret ); + } + + // Needed because $( selector, context ) becomes $( context ).find( selector ) + ret = this.pushStack( len > 1 ? jQuery.unique( ret ) : ret ); + ret.selector = this.selector ? this.selector + " " + selector : selector; + return ret; + }, + filter: function( selector ) { + return this.pushStack( winnow(this, selector || [], false) ); + }, + not: function( selector ) { + return this.pushStack( winnow(this, selector || [], true) ); + }, + is: function( selector ) { + return !!winnow( + this, + + // If this is a positional/relative selector, check membership in the returned set + // so $("p:first").is("p:last") won't return true for a doc with two "p". + typeof selector === "string" && rneedsContext.test( selector ) ? + jQuery( selector ) : + selector || [], + false + ).length; + } +}); + + +// Initialize a jQuery object + + +// A central reference to the root jQuery(document) +var rootjQuery, + + // Use the correct document accordingly with window argument (sandbox) + document = window.document, + + // A simple way to check for HTML strings + // Prioritize #id over to avoid XSS via location.hash (#9521) + // Strict HTML recognition (#11290: must start with <) + rquickExpr = /^(?:\s*(<[\w\W]+>)[^>]*|#([\w-]*))$/, + + init = jQuery.fn.init = function( selector, context ) { + var match, elem; + + // HANDLE: $(""), $(null), $(undefined), $(false) + if ( !selector ) { + return this; + } + + // Handle HTML strings + if ( typeof selector === "string" ) { + if ( selector.charAt(0) === "<" && selector.charAt( selector.length - 1 ) === ">" && selector.length >= 3 ) { + // Assume that strings that start and end with <> are HTML and skip the regex check + match = [ null, selector, null ]; + + } else { + match = rquickExpr.exec( selector ); + } + + // Match html or make sure no context is specified for #id + if ( match && (match[1] || !context) ) { + + // HANDLE: $(html) -> $(array) + if ( match[1] ) { + context = context instanceof jQuery ? context[0] : context; + + // scripts is true for back-compat + // Intentionally let the error be thrown if parseHTML is not present + jQuery.merge( this, jQuery.parseHTML( + match[1], + context && context.nodeType ? context.ownerDocument || context : document, + true + ) ); + + // HANDLE: $(html, props) + if ( rsingleTag.test( match[1] ) && jQuery.isPlainObject( context ) ) { + for ( match in context ) { + // Properties of context are called as methods if possible + if ( jQuery.isFunction( this[ match ] ) ) { + this[ match ]( context[ match ] ); + + // ...and otherwise set as attributes + } else { + this.attr( match, context[ match ] ); + } + } + } + + return this; + + // HANDLE: $(#id) + } else { + elem = document.getElementById( match[2] ); + + // Check parentNode to catch when Blackberry 4.6 returns + // nodes that are no longer in the document #6963 + if ( elem && elem.parentNode ) { + // Handle the case where IE and Opera return items + // by name instead of ID + if ( elem.id !== match[2] ) { + return rootjQuery.find( selector ); + } + + // Otherwise, we inject the element directly into the jQuery object + this.length = 1; + this[0] = elem; + } + + this.context = document; + this.selector = selector; + return this; + } + + // HANDLE: $(expr, $(...)) + } else if ( !context || context.jquery ) { + return ( context || rootjQuery ).find( selector ); + + // HANDLE: $(expr, context) + // (which is just equivalent to: $(context).find(expr) + } else { + return this.constructor( context ).find( selector ); + } + + // HANDLE: $(DOMElement) + } else if ( selector.nodeType ) { + this.context = this[0] = selector; + this.length = 1; + return this; + + // HANDLE: $(function) + // Shortcut for document ready + } else if ( jQuery.isFunction( selector ) ) { + return typeof rootjQuery.ready !== "undefined" ? + rootjQuery.ready( selector ) : + // Execute immediately if ready is not present + selector( jQuery ); + } + + if ( selector.selector !== undefined ) { + this.selector = selector.selector; + this.context = selector.context; + } + + return jQuery.makeArray( selector, this ); + }; + +// Give the init function the jQuery prototype for later instantiation +init.prototype = jQuery.fn; + +// Initialize central reference +rootjQuery = jQuery( document ); + + +var rparentsprev = /^(?:parents|prev(?:Until|All))/, + // methods guaranteed to produce a unique set when starting from a unique set + guaranteedUnique = { + children: true, + contents: true, + next: true, + prev: true + }; + +jQuery.extend({ + dir: function( elem, dir, until ) { + var matched = [], + cur = elem[ dir ]; + + while ( cur && cur.nodeType !== 9 && (until === undefined || cur.nodeType !== 1 || !jQuery( cur ).is( until )) ) { + if ( cur.nodeType === 1 ) { + matched.push( cur ); + } + cur = cur[dir]; + } + return matched; + }, + + sibling: function( n, elem ) { + var r = []; + + for ( ; n; n = n.nextSibling ) { + if ( n.nodeType === 1 && n !== elem ) { + r.push( n ); + } + } + + return r; + } +}); + +jQuery.fn.extend({ + has: function( target ) { + var i, + targets = jQuery( target, this ), + len = targets.length; + + return this.filter(function() { + for ( i = 0; i < len; i++ ) { + if ( jQuery.contains( this, targets[i] ) ) { + return true; + } + } + }); + }, + + closest: function( selectors, context ) { + var cur, + i = 0, + l = this.length, + matched = [], + pos = rneedsContext.test( selectors ) || typeof selectors !== "string" ? + jQuery( selectors, context || this.context ) : + 0; + + for ( ; i < l; i++ ) { + for ( cur = this[i]; cur && cur !== context; cur = cur.parentNode ) { + // Always skip document fragments + if ( cur.nodeType < 11 && (pos ? + pos.index(cur) > -1 : + + // Don't pass non-elements to Sizzle + cur.nodeType === 1 && + jQuery.find.matchesSelector(cur, selectors)) ) { + + matched.push( cur ); + break; + } + } + } + + return this.pushStack( matched.length > 1 ? jQuery.unique( matched ) : matched ); + }, + + // Determine the position of an element within + // the matched set of elements + index: function( elem ) { + + // No argument, return index in parent + if ( !elem ) { + return ( this[0] && this[0].parentNode ) ? this.first().prevAll().length : -1; + } + + // index in selector + if ( typeof elem === "string" ) { + return jQuery.inArray( this[0], jQuery( elem ) ); + } + + // Locate the position of the desired element + return jQuery.inArray( + // If it receives a jQuery object, the first element is used + elem.jquery ? elem[0] : elem, this ); + }, + + add: function( selector, context ) { + return this.pushStack( + jQuery.unique( + jQuery.merge( this.get(), jQuery( selector, context ) ) + ) + ); + }, + + addBack: function( selector ) { + return this.add( selector == null ? + this.prevObject : this.prevObject.filter(selector) + ); + } +}); + +function sibling( cur, dir ) { + do { + cur = cur[ dir ]; + } while ( cur && cur.nodeType !== 1 ); + + return cur; +} + +jQuery.each({ + parent: function( elem ) { + var parent = elem.parentNode; + return parent && parent.nodeType !== 11 ? parent : null; + }, + parents: function( elem ) { + return jQuery.dir( elem, "parentNode" ); + }, + parentsUntil: function( elem, i, until ) { + return jQuery.dir( elem, "parentNode", until ); + }, + next: function( elem ) { + return sibling( elem, "nextSibling" ); + }, + prev: function( elem ) { + return sibling( elem, "previousSibling" ); + }, + nextAll: function( elem ) { + return jQuery.dir( elem, "nextSibling" ); + }, + prevAll: function( elem ) { + return jQuery.dir( elem, "previousSibling" ); + }, + nextUntil: function( elem, i, until ) { + return jQuery.dir( elem, "nextSibling", until ); + }, + prevUntil: function( elem, i, until ) { + return jQuery.dir( elem, "previousSibling", until ); + }, + siblings: function( elem ) { + return jQuery.sibling( ( elem.parentNode || {} ).firstChild, elem ); + }, + children: function( elem ) { + return jQuery.sibling( elem.firstChild ); + }, + contents: function( elem ) { + return jQuery.nodeName( elem, "iframe" ) ? + elem.contentDocument || elem.contentWindow.document : + jQuery.merge( [], elem.childNodes ); + } +}, function( name, fn ) { + jQuery.fn[ name ] = function( until, selector ) { + var ret = jQuery.map( this, fn, until ); + + if ( name.slice( -5 ) !== "Until" ) { + selector = until; + } + + if ( selector && typeof selector === "string" ) { + ret = jQuery.filter( selector, ret ); + } + + if ( this.length > 1 ) { + // Remove duplicates + if ( !guaranteedUnique[ name ] ) { + ret = jQuery.unique( ret ); + } + + // Reverse order for parents* and prev-derivatives + if ( rparentsprev.test( name ) ) { + ret = ret.reverse(); + } + } + + return this.pushStack( ret ); + }; +}); +var rnotwhite = (/\S+/g); + + + +// String to Object options format cache +var optionsCache = {}; + +// Convert String-formatted options into Object-formatted ones and store in cache +function createOptions( options ) { + var object = optionsCache[ options ] = {}; + jQuery.each( options.match( rnotwhite ) || [], function( _, flag ) { + object[ flag ] = true; + }); + return object; +} + +/* + * Create a callback list using the following parameters: + * + * options: an optional list of space-separated options that will change how + * the callback list behaves or a more traditional option object + * + * By default a callback list will act like an event callback list and can be + * "fired" multiple times. + * + * Possible options: + * + * once: will ensure the callback list can only be fired once (like a Deferred) + * + * memory: will keep track of previous values and will call any callback added + * after the list has been fired right away with the latest "memorized" + * values (like a Deferred) + * + * unique: will ensure a callback can only be added once (no duplicate in the list) + * + * stopOnFalse: interrupt callings when a callback returns false + * + */ +jQuery.Callbacks = function( options ) { + + // Convert options from String-formatted to Object-formatted if needed + // (we check in cache first) + options = typeof options === "string" ? + ( optionsCache[ options ] || createOptions( options ) ) : + jQuery.extend( {}, options ); + + var // Flag to know if list is currently firing + firing, + // Last fire value (for non-forgettable lists) + memory, + // Flag to know if list was already fired + fired, + // End of the loop when firing + firingLength, + // Index of currently firing callback (modified by remove if needed) + firingIndex, + // First callback to fire (used internally by add and fireWith) + firingStart, + // Actual callback list + list = [], + // Stack of fire calls for repeatable lists + stack = !options.once && [], + // Fire callbacks + fire = function( data ) { + memory = options.memory && data; + fired = true; + firingIndex = firingStart || 0; + firingStart = 0; + firingLength = list.length; + firing = true; + for ( ; list && firingIndex < firingLength; firingIndex++ ) { + if ( list[ firingIndex ].apply( data[ 0 ], data[ 1 ] ) === false && options.stopOnFalse ) { + memory = false; // To prevent further calls using add + break; + } + } + firing = false; + if ( list ) { + if ( stack ) { + if ( stack.length ) { + fire( stack.shift() ); + } + } else if ( memory ) { + list = []; + } else { + self.disable(); + } + } + }, + // Actual Callbacks object + self = { + // Add a callback or a collection of callbacks to the list + add: function() { + if ( list ) { + // First, we save the current length + var start = list.length; + (function add( args ) { + jQuery.each( args, function( _, arg ) { + var type = jQuery.type( arg ); + if ( type === "function" ) { + if ( !options.unique || !self.has( arg ) ) { + list.push( arg ); + } + } else if ( arg && arg.length && type !== "string" ) { + // Inspect recursively + add( arg ); + } + }); + })( arguments ); + // Do we need to add the callbacks to the + // current firing batch? + if ( firing ) { + firingLength = list.length; + // With memory, if we're not firing then + // we should call right away + } else if ( memory ) { + firingStart = start; + fire( memory ); + } + } + return this; + }, + // Remove a callback from the list + remove: function() { + if ( list ) { + jQuery.each( arguments, function( _, arg ) { + var index; + while ( ( index = jQuery.inArray( arg, list, index ) ) > -1 ) { + list.splice( index, 1 ); + // Handle firing indexes + if ( firing ) { + if ( index <= firingLength ) { + firingLength--; + } + if ( index <= firingIndex ) { + firingIndex--; + } + } + } + }); + } + return this; + }, + // Check if a given callback is in the list. + // If no argument is given, return whether or not list has callbacks attached. + has: function( fn ) { + return fn ? jQuery.inArray( fn, list ) > -1 : !!( list && list.length ); + }, + // Remove all callbacks from the list + empty: function() { + list = []; + firingLength = 0; + return this; + }, + // Have the list do nothing anymore + disable: function() { + list = stack = memory = undefined; + return this; + }, + // Is it disabled? + disabled: function() { + return !list; + }, + // Lock the list in its current state + lock: function() { + stack = undefined; + if ( !memory ) { + self.disable(); + } + return this; + }, + // Is it locked? + locked: function() { + return !stack; + }, + // Call all callbacks with the given context and arguments + fireWith: function( context, args ) { + if ( list && ( !fired || stack ) ) { + args = args || []; + args = [ context, args.slice ? args.slice() : args ]; + if ( firing ) { + stack.push( args ); + } else { + fire( args ); + } + } + return this; + }, + // Call all the callbacks with the given arguments + fire: function() { + self.fireWith( this, arguments ); + return this; + }, + // To know if the callbacks have already been called at least once + fired: function() { + return !!fired; + } + }; + + return self; +}; + + +jQuery.extend({ + + Deferred: function( func ) { + var tuples = [ + // action, add listener, listener list, final state + [ "resolve", "done", jQuery.Callbacks("once memory"), "resolved" ], + [ "reject", "fail", jQuery.Callbacks("once memory"), "rejected" ], + [ "notify", "progress", jQuery.Callbacks("memory") ] + ], + state = "pending", + promise = { + state: function() { + return state; + }, + always: function() { + deferred.done( arguments ).fail( arguments ); + return this; + }, + then: function( /* fnDone, fnFail, fnProgress */ ) { + var fns = arguments; + return jQuery.Deferred(function( newDefer ) { + jQuery.each( tuples, function( i, tuple ) { + var fn = jQuery.isFunction( fns[ i ] ) && fns[ i ]; + // deferred[ done | fail | progress ] for forwarding actions to newDefer + deferred[ tuple[1] ](function() { + var returned = fn && fn.apply( this, arguments ); + if ( returned && jQuery.isFunction( returned.promise ) ) { + returned.promise() + .done( newDefer.resolve ) + .fail( newDefer.reject ) + .progress( newDefer.notify ); + } else { + newDefer[ tuple[ 0 ] + "With" ]( this === promise ? newDefer.promise() : this, fn ? [ returned ] : arguments ); + } + }); + }); + fns = null; + }).promise(); + }, + // Get a promise for this deferred + // If obj is provided, the promise aspect is added to the object + promise: function( obj ) { + return obj != null ? jQuery.extend( obj, promise ) : promise; + } + }, + deferred = {}; + + // Keep pipe for back-compat + promise.pipe = promise.then; + + // Add list-specific methods + jQuery.each( tuples, function( i, tuple ) { + var list = tuple[ 2 ], + stateString = tuple[ 3 ]; + + // promise[ done | fail | progress ] = list.add + promise[ tuple[1] ] = list.add; + + // Handle state + if ( stateString ) { + list.add(function() { + // state = [ resolved | rejected ] + state = stateString; + + // [ reject_list | resolve_list ].disable; progress_list.lock + }, tuples[ i ^ 1 ][ 2 ].disable, tuples[ 2 ][ 2 ].lock ); + } + + // deferred[ resolve | reject | notify ] + deferred[ tuple[0] ] = function() { + deferred[ tuple[0] + "With" ]( this === deferred ? promise : this, arguments ); + return this; + }; + deferred[ tuple[0] + "With" ] = list.fireWith; + }); + + // Make the deferred a promise + promise.promise( deferred ); + + // Call given func if any + if ( func ) { + func.call( deferred, deferred ); + } + + // All done! + return deferred; + }, + + // Deferred helper + when: function( subordinate /* , ..., subordinateN */ ) { + var i = 0, + resolveValues = slice.call( arguments ), + length = resolveValues.length, + + // the count of uncompleted subordinates + remaining = length !== 1 || ( subordinate && jQuery.isFunction( subordinate.promise ) ) ? length : 0, + + // the master Deferred. If resolveValues consist of only a single Deferred, just use that. + deferred = remaining === 1 ? subordinate : jQuery.Deferred(), + + // Update function for both resolve and progress values + updateFunc = function( i, contexts, values ) { + return function( value ) { + contexts[ i ] = this; + values[ i ] = arguments.length > 1 ? slice.call( arguments ) : value; + if ( values === progressValues ) { + deferred.notifyWith( contexts, values ); + + } else if ( !(--remaining) ) { + deferred.resolveWith( contexts, values ); + } + }; + }, + + progressValues, progressContexts, resolveContexts; + + // add listeners to Deferred subordinates; treat others as resolved + if ( length > 1 ) { + progressValues = new Array( length ); + progressContexts = new Array( length ); + resolveContexts = new Array( length ); + for ( ; i < length; i++ ) { + if ( resolveValues[ i ] && jQuery.isFunction( resolveValues[ i ].promise ) ) { + resolveValues[ i ].promise() + .done( updateFunc( i, resolveContexts, resolveValues ) ) + .fail( deferred.reject ) + .progress( updateFunc( i, progressContexts, progressValues ) ); + } else { + --remaining; + } + } + } + + // if we're not waiting on anything, resolve the master + if ( !remaining ) { + deferred.resolveWith( resolveContexts, resolveValues ); + } + + return deferred.promise(); + } +}); + + +// The deferred used on DOM ready +var readyList; + +jQuery.fn.ready = function( fn ) { + // Add the callback + jQuery.ready.promise().done( fn ); + + return this; +}; + +jQuery.extend({ + // Is the DOM ready to be used? Set to true once it occurs. + isReady: false, + + // A counter to track how many items to wait for before + // the ready event fires. See #6781 + readyWait: 1, + + // Hold (or release) the ready event + holdReady: function( hold ) { + if ( hold ) { + jQuery.readyWait++; + } else { + jQuery.ready( true ); + } + }, + + // Handle when the DOM is ready + ready: function( wait ) { + + // Abort if there are pending holds or we're already ready + if ( wait === true ? --jQuery.readyWait : jQuery.isReady ) { + return; + } + + // Make sure body exists, at least, in case IE gets a little overzealous (ticket #5443). + if ( !document.body ) { + return setTimeout( jQuery.ready ); + } + + // Remember that the DOM is ready + jQuery.isReady = true; + + // If a normal DOM Ready event fired, decrement, and wait if need be + if ( wait !== true && --jQuery.readyWait > 0 ) { + return; + } + + // If there are functions bound, to execute + readyList.resolveWith( document, [ jQuery ] ); + + // Trigger any bound ready events + if ( jQuery.fn.triggerHandler ) { + jQuery( document ).triggerHandler( "ready" ); + jQuery( document ).off( "ready" ); + } + } +}); + +/** + * Clean-up method for dom ready events + */ +function detach() { + if ( document.addEventListener ) { + document.removeEventListener( "DOMContentLoaded", completed, false ); + window.removeEventListener( "load", completed, false ); + + } else { + document.detachEvent( "onreadystatechange", completed ); + window.detachEvent( "onload", completed ); + } +} + +/** + * The ready event handler and self cleanup method + */ +function completed() { + // readyState === "complete" is good enough for us to call the dom ready in oldIE + if ( document.addEventListener || event.type === "load" || document.readyState === "complete" ) { + detach(); + jQuery.ready(); + } +} + +jQuery.ready.promise = function( obj ) { + if ( !readyList ) { + + readyList = jQuery.Deferred(); + + // Catch cases where $(document).ready() is called after the browser event has already occurred. + // we once tried to use readyState "interactive" here, but it caused issues like the one + // discovered by ChrisS here: http://bugs.jquery.com/ticket/12282#comment:15 + if ( document.readyState === "complete" ) { + // Handle it asynchronously to allow scripts the opportunity to delay ready + setTimeout( jQuery.ready ); + + // Standards-based browsers support DOMContentLoaded + } else if ( document.addEventListener ) { + // Use the handy event callback + document.addEventListener( "DOMContentLoaded", completed, false ); + + // A fallback to window.onload, that will always work + window.addEventListener( "load", completed, false ); + + // If IE event model is used + } else { + // Ensure firing before onload, maybe late but safe also for iframes + document.attachEvent( "onreadystatechange", completed ); + + // A fallback to window.onload, that will always work + window.attachEvent( "onload", completed ); + + // If IE and not a frame + // continually check to see if the document is ready + var top = false; + + try { + top = window.frameElement == null && document.documentElement; + } catch(e) {} + + if ( top && top.doScroll ) { + (function doScrollCheck() { + if ( !jQuery.isReady ) { + + try { + // Use the trick by Diego Perini + // http://javascript.nwbox.com/IEContentLoaded/ + top.doScroll("left"); + } catch(e) { + return setTimeout( doScrollCheck, 50 ); + } + + // detach all dom ready events + detach(); + + // and execute any waiting functions + jQuery.ready(); + } + })(); + } + } + } + return readyList.promise( obj ); +}; + + +var strundefined = typeof undefined; + + + +// Support: IE<9 +// Iteration over object's inherited properties before its own +var i; +for ( i in jQuery( support ) ) { + break; +} +support.ownLast = i !== "0"; + +// Note: most support tests are defined in their respective modules. +// false until the test is run +support.inlineBlockNeedsLayout = false; + +// Execute ASAP in case we need to set body.style.zoom +jQuery(function() { + // Minified: var a,b,c,d + var val, div, body, container; + + body = document.getElementsByTagName( "body" )[ 0 ]; + if ( !body || !body.style ) { + // Return for frameset docs that don't have a body + return; + } + + // Setup + div = document.createElement( "div" ); + container = document.createElement( "div" ); + container.style.cssText = "position:absolute;border:0;width:0;height:0;top:0;left:-9999px"; + body.appendChild( container ).appendChild( div ); + + if ( typeof div.style.zoom !== strundefined ) { + // Support: IE<8 + // Check if natively block-level elements act like inline-block + // elements when setting their display to 'inline' and giving + // them layout + div.style.cssText = "display:inline;margin:0;border:0;padding:1px;width:1px;zoom:1"; + + support.inlineBlockNeedsLayout = val = div.offsetWidth === 3; + if ( val ) { + // Prevent IE 6 from affecting layout for positioned elements #11048 + // Prevent IE from shrinking the body in IE 7 mode #12869 + // Support: IE<8 + body.style.zoom = 1; + } + } + + body.removeChild( container ); +}); + + + + +(function() { + var div = document.createElement( "div" ); + + // Execute the test only if not already executed in another module. + if (support.deleteExpando == null) { + // Support: IE<9 + support.deleteExpando = true; + try { + delete div.test; + } catch( e ) { + support.deleteExpando = false; + } + } + + // Null elements to avoid leaks in IE. + div = null; +})(); + + +/** + * Determines whether an object can have data + */ +jQuery.acceptData = function( elem ) { + var noData = jQuery.noData[ (elem.nodeName + " ").toLowerCase() ], + nodeType = +elem.nodeType || 1; + + // Do not set data on non-element DOM nodes because it will not be cleared (#8335). + return nodeType !== 1 && nodeType !== 9 ? + false : + + // Nodes accept data unless otherwise specified; rejection can be conditional + !noData || noData !== true && elem.getAttribute("classid") === noData; +}; + + +var rbrace = /^(?:\{[\w\W]*\}|\[[\w\W]*\])$/, + rmultiDash = /([A-Z])/g; + +function dataAttr( elem, key, data ) { + // If nothing was found internally, try to fetch any + // data from the HTML5 data-* attribute + if ( data === undefined && elem.nodeType === 1 ) { + + var name = "data-" + key.replace( rmultiDash, "-$1" ).toLowerCase(); + + data = elem.getAttribute( name ); + + if ( typeof data === "string" ) { + try { + data = data === "true" ? true : + data === "false" ? false : + data === "null" ? null : + // Only convert to a number if it doesn't change the string + +data + "" === data ? +data : + rbrace.test( data ) ? jQuery.parseJSON( data ) : + data; + } catch( e ) {} + + // Make sure we set the data so it isn't changed later + jQuery.data( elem, key, data ); + + } else { + data = undefined; + } + } + + return data; +} + +// checks a cache object for emptiness +function isEmptyDataObject( obj ) { + var name; + for ( name in obj ) { + + // if the public data object is empty, the private is still empty + if ( name === "data" && jQuery.isEmptyObject( obj[name] ) ) { + continue; + } + if ( name !== "toJSON" ) { + return false; + } + } + + return true; +} + +function internalData( elem, name, data, pvt /* Internal Use Only */ ) { + if ( !jQuery.acceptData( elem ) ) { + return; + } + + var ret, thisCache, + internalKey = jQuery.expando, + + // We have to handle DOM nodes and JS objects differently because IE6-7 + // can't GC object references properly across the DOM-JS boundary + isNode = elem.nodeType, + + // Only DOM nodes need the global jQuery cache; JS object data is + // attached directly to the object so GC can occur automatically + cache = isNode ? jQuery.cache : elem, + + // Only defining an ID for JS objects if its cache already exists allows + // the code to shortcut on the same path as a DOM node with no cache + id = isNode ? elem[ internalKey ] : elem[ internalKey ] && internalKey; + + // Avoid doing any more work than we need to when trying to get data on an + // object that has no data at all + if ( (!id || !cache[id] || (!pvt && !cache[id].data)) && data === undefined && typeof name === "string" ) { + return; + } + + if ( !id ) { + // Only DOM nodes need a new unique ID for each element since their data + // ends up in the global cache + if ( isNode ) { + id = elem[ internalKey ] = deletedIds.pop() || jQuery.guid++; + } else { + id = internalKey; + } + } + + if ( !cache[ id ] ) { + // Avoid exposing jQuery metadata on plain JS objects when the object + // is serialized using JSON.stringify + cache[ id ] = isNode ? {} : { toJSON: jQuery.noop }; + } + + // An object can be passed to jQuery.data instead of a key/value pair; this gets + // shallow copied over onto the existing cache + if ( typeof name === "object" || typeof name === "function" ) { + if ( pvt ) { + cache[ id ] = jQuery.extend( cache[ id ], name ); + } else { + cache[ id ].data = jQuery.extend( cache[ id ].data, name ); + } + } + + thisCache = cache[ id ]; + + // jQuery data() is stored in a separate object inside the object's internal data + // cache in order to avoid key collisions between internal data and user-defined + // data. + if ( !pvt ) { + if ( !thisCache.data ) { + thisCache.data = {}; + } + + thisCache = thisCache.data; + } + + if ( data !== undefined ) { + thisCache[ jQuery.camelCase( name ) ] = data; + } + + // Check for both converted-to-camel and non-converted data property names + // If a data property was specified + if ( typeof name === "string" ) { + + // First Try to find as-is property data + ret = thisCache[ name ]; + + // Test for null|undefined property data + if ( ret == null ) { + + // Try to find the camelCased property + ret = thisCache[ jQuery.camelCase( name ) ]; + } + } else { + ret = thisCache; + } + + return ret; +} + +function internalRemoveData( elem, name, pvt ) { + if ( !jQuery.acceptData( elem ) ) { + return; + } + + var thisCache, i, + isNode = elem.nodeType, + + // See jQuery.data for more information + cache = isNode ? jQuery.cache : elem, + id = isNode ? elem[ jQuery.expando ] : jQuery.expando; + + // If there is already no cache entry for this object, there is no + // purpose in continuing + if ( !cache[ id ] ) { + return; + } + + if ( name ) { + + thisCache = pvt ? cache[ id ] : cache[ id ].data; + + if ( thisCache ) { + + // Support array or space separated string names for data keys + if ( !jQuery.isArray( name ) ) { + + // try the string as a key before any manipulation + if ( name in thisCache ) { + name = [ name ]; + } else { + + // split the camel cased version by spaces unless a key with the spaces exists + name = jQuery.camelCase( name ); + if ( name in thisCache ) { + name = [ name ]; + } else { + name = name.split(" "); + } + } + } else { + // If "name" is an array of keys... + // When data is initially created, via ("key", "val") signature, + // keys will be converted to camelCase. + // Since there is no way to tell _how_ a key was added, remove + // both plain key and camelCase key. #12786 + // This will only penalize the array argument path. + name = name.concat( jQuery.map( name, jQuery.camelCase ) ); + } + + i = name.length; + while ( i-- ) { + delete thisCache[ name[i] ]; + } + + // If there is no data left in the cache, we want to continue + // and let the cache object itself get destroyed + if ( pvt ? !isEmptyDataObject(thisCache) : !jQuery.isEmptyObject(thisCache) ) { + return; + } + } + } + + // See jQuery.data for more information + if ( !pvt ) { + delete cache[ id ].data; + + // Don't destroy the parent cache unless the internal data object + // had been the only thing left in it + if ( !isEmptyDataObject( cache[ id ] ) ) { + return; + } + } + + // Destroy the cache + if ( isNode ) { + jQuery.cleanData( [ elem ], true ); + + // Use delete when supported for expandos or `cache` is not a window per isWindow (#10080) + /* jshint eqeqeq: false */ + } else if ( support.deleteExpando || cache != cache.window ) { + /* jshint eqeqeq: true */ + delete cache[ id ]; + + // When all else fails, null + } else { + cache[ id ] = null; + } +} + +jQuery.extend({ + cache: {}, + + // The following elements (space-suffixed to avoid Object.prototype collisions) + // throw uncatchable exceptions if you attempt to set expando properties + noData: { + "applet ": true, + "embed ": true, + // ...but Flash objects (which have this classid) *can* handle expandos + "object ": "clsid:D27CDB6E-AE6D-11cf-96B8-444553540000" + }, + + hasData: function( elem ) { + elem = elem.nodeType ? jQuery.cache[ elem[jQuery.expando] ] : elem[ jQuery.expando ]; + return !!elem && !isEmptyDataObject( elem ); + }, + + data: function( elem, name, data ) { + return internalData( elem, name, data ); + }, + + removeData: function( elem, name ) { + return internalRemoveData( elem, name ); + }, + + // For internal use only. + _data: function( elem, name, data ) { + return internalData( elem, name, data, true ); + }, + + _removeData: function( elem, name ) { + return internalRemoveData( elem, name, true ); + } +}); + +jQuery.fn.extend({ + data: function( key, value ) { + var i, name, data, + elem = this[0], + attrs = elem && elem.attributes; + + // Special expections of .data basically thwart jQuery.access, + // so implement the relevant behavior ourselves + + // Gets all values + if ( key === undefined ) { + if ( this.length ) { + data = jQuery.data( elem ); + + if ( elem.nodeType === 1 && !jQuery._data( elem, "parsedAttrs" ) ) { + i = attrs.length; + while ( i-- ) { + + // Support: IE11+ + // The attrs elements can be null (#14894) + if ( attrs[ i ] ) { + name = attrs[ i ].name; + if ( name.indexOf( "data-" ) === 0 ) { + name = jQuery.camelCase( name.slice(5) ); + dataAttr( elem, name, data[ name ] ); + } + } + } + jQuery._data( elem, "parsedAttrs", true ); + } + } + + return data; + } + + // Sets multiple values + if ( typeof key === "object" ) { + return this.each(function() { + jQuery.data( this, key ); + }); + } + + return arguments.length > 1 ? + + // Sets one value + this.each(function() { + jQuery.data( this, key, value ); + }) : + + // Gets one value + // Try to fetch any internally stored data first + elem ? dataAttr( elem, key, jQuery.data( elem, key ) ) : undefined; + }, + + removeData: function( key ) { + return this.each(function() { + jQuery.removeData( this, key ); + }); + } +}); + + +jQuery.extend({ + queue: function( elem, type, data ) { + var queue; + + if ( elem ) { + type = ( type || "fx" ) + "queue"; + queue = jQuery._data( elem, type ); + + // Speed up dequeue by getting out quickly if this is just a lookup + if ( data ) { + if ( !queue || jQuery.isArray(data) ) { + queue = jQuery._data( elem, type, jQuery.makeArray(data) ); + } else { + queue.push( data ); + } + } + return queue || []; + } + }, + + dequeue: function( elem, type ) { + type = type || "fx"; + + var queue = jQuery.queue( elem, type ), + startLength = queue.length, + fn = queue.shift(), + hooks = jQuery._queueHooks( elem, type ), + next = function() { + jQuery.dequeue( elem, type ); + }; + + // If the fx queue is dequeued, always remove the progress sentinel + if ( fn === "inprogress" ) { + fn = queue.shift(); + startLength--; + } + + if ( fn ) { + + // Add a progress sentinel to prevent the fx queue from being + // automatically dequeued + if ( type === "fx" ) { + queue.unshift( "inprogress" ); + } + + // clear up the last queue stop function + delete hooks.stop; + fn.call( elem, next, hooks ); + } + + if ( !startLength && hooks ) { + hooks.empty.fire(); + } + }, + + // not intended for public consumption - generates a queueHooks object, or returns the current one + _queueHooks: function( elem, type ) { + var key = type + "queueHooks"; + return jQuery._data( elem, key ) || jQuery._data( elem, key, { + empty: jQuery.Callbacks("once memory").add(function() { + jQuery._removeData( elem, type + "queue" ); + jQuery._removeData( elem, key ); + }) + }); + } +}); + +jQuery.fn.extend({ + queue: function( type, data ) { + var setter = 2; + + if ( typeof type !== "string" ) { + data = type; + type = "fx"; + setter--; + } + + if ( arguments.length < setter ) { + return jQuery.queue( this[0], type ); + } + + return data === undefined ? + this : + this.each(function() { + var queue = jQuery.queue( this, type, data ); + + // ensure a hooks for this queue + jQuery._queueHooks( this, type ); + + if ( type === "fx" && queue[0] !== "inprogress" ) { + jQuery.dequeue( this, type ); + } + }); + }, + dequeue: function( type ) { + return this.each(function() { + jQuery.dequeue( this, type ); + }); + }, + clearQueue: function( type ) { + return this.queue( type || "fx", [] ); + }, + // Get a promise resolved when queues of a certain type + // are emptied (fx is the type by default) + promise: function( type, obj ) { + var tmp, + count = 1, + defer = jQuery.Deferred(), + elements = this, + i = this.length, + resolve = function() { + if ( !( --count ) ) { + defer.resolveWith( elements, [ elements ] ); + } + }; + + if ( typeof type !== "string" ) { + obj = type; + type = undefined; + } + type = type || "fx"; + + while ( i-- ) { + tmp = jQuery._data( elements[ i ], type + "queueHooks" ); + if ( tmp && tmp.empty ) { + count++; + tmp.empty.add( resolve ); + } + } + resolve(); + return defer.promise( obj ); + } +}); +var pnum = (/[+-]?(?:\d*\.|)\d+(?:[eE][+-]?\d+|)/).source; + +var cssExpand = [ "Top", "Right", "Bottom", "Left" ]; + +var isHidden = function( elem, el ) { + // isHidden might be called from jQuery#filter function; + // in that case, element will be second argument + elem = el || elem; + return jQuery.css( elem, "display" ) === "none" || !jQuery.contains( elem.ownerDocument, elem ); + }; + + + +// Multifunctional method to get and set values of a collection +// The value/s can optionally be executed if it's a function +var access = jQuery.access = function( elems, fn, key, value, chainable, emptyGet, raw ) { + var i = 0, + length = elems.length, + bulk = key == null; + + // Sets many values + if ( jQuery.type( key ) === "object" ) { + chainable = true; + for ( i in key ) { + jQuery.access( elems, fn, i, key[i], true, emptyGet, raw ); + } + + // Sets one value + } else if ( value !== undefined ) { + chainable = true; + + if ( !jQuery.isFunction( value ) ) { + raw = true; + } + + if ( bulk ) { + // Bulk operations run against the entire set + if ( raw ) { + fn.call( elems, value ); + fn = null; + + // ...except when executing function values + } else { + bulk = fn; + fn = function( elem, key, value ) { + return bulk.call( jQuery( elem ), value ); + }; + } + } + + if ( fn ) { + for ( ; i < length; i++ ) { + fn( elems[i], key, raw ? value : value.call( elems[i], i, fn( elems[i], key ) ) ); + } + } + } + + return chainable ? + elems : + + // Gets + bulk ? + fn.call( elems ) : + length ? fn( elems[0], key ) : emptyGet; +}; +var rcheckableType = (/^(?:checkbox|radio)$/i); + + + +(function() { + // Minified: var a,b,c + var input = document.createElement( "input" ), + div = document.createElement( "div" ), + fragment = document.createDocumentFragment(); + + // Setup + div.innerHTML = "
a"; + + // IE strips leading whitespace when .innerHTML is used + support.leadingWhitespace = div.firstChild.nodeType === 3; + + // Make sure that tbody elements aren't automatically inserted + // IE will insert them into empty tables + support.tbody = !div.getElementsByTagName( "tbody" ).length; + + // Make sure that link elements get serialized correctly by innerHTML + // This requires a wrapper element in IE + support.htmlSerialize = !!div.getElementsByTagName( "link" ).length; + + // Makes sure cloning an html5 element does not cause problems + // Where outerHTML is undefined, this still works + support.html5Clone = + document.createElement( "nav" ).cloneNode( true ).outerHTML !== "<:nav>"; + + // Check if a disconnected checkbox will retain its checked + // value of true after appended to the DOM (IE6/7) + input.type = "checkbox"; + input.checked = true; + fragment.appendChild( input ); + support.appendChecked = input.checked; + + // Make sure textarea (and checkbox) defaultValue is properly cloned + // Support: IE6-IE11+ + div.innerHTML = ""; + support.noCloneChecked = !!div.cloneNode( true ).lastChild.defaultValue; + + // #11217 - WebKit loses check when the name is after the checked attribute + fragment.appendChild( div ); + div.innerHTML = ""; + + // Support: Safari 5.1, iOS 5.1, Android 4.x, Android 2.3 + // old WebKit doesn't clone checked state correctly in fragments + support.checkClone = div.cloneNode( true ).cloneNode( true ).lastChild.checked; + + // Support: IE<9 + // Opera does not clone events (and typeof div.attachEvent === undefined). + // IE9-10 clones events bound via attachEvent, but they don't trigger with .click() + support.noCloneEvent = true; + if ( div.attachEvent ) { + div.attachEvent( "onclick", function() { + support.noCloneEvent = false; + }); + + div.cloneNode( true ).click(); + } + + // Execute the test only if not already executed in another module. + if (support.deleteExpando == null) { + // Support: IE<9 + support.deleteExpando = true; + try { + delete div.test; + } catch( e ) { + support.deleteExpando = false; + } + } +})(); + + +(function() { + var i, eventName, + div = document.createElement( "div" ); + + // Support: IE<9 (lack submit/change bubble), Firefox 23+ (lack focusin event) + for ( i in { submit: true, change: true, focusin: true }) { + eventName = "on" + i; + + if ( !(support[ i + "Bubbles" ] = eventName in window) ) { + // Beware of CSP restrictions (https://developer.mozilla.org/en/Security/CSP) + div.setAttribute( eventName, "t" ); + support[ i + "Bubbles" ] = div.attributes[ eventName ].expando === false; + } + } + + // Null elements to avoid leaks in IE. + div = null; +})(); + + +var rformElems = /^(?:input|select|textarea)$/i, + rkeyEvent = /^key/, + rmouseEvent = /^(?:mouse|pointer|contextmenu)|click/, + rfocusMorph = /^(?:focusinfocus|focusoutblur)$/, + rtypenamespace = /^([^.]*)(?:\.(.+)|)$/; + +function returnTrue() { + return true; +} + +function returnFalse() { + return false; +} + +function safeActiveElement() { + try { + return document.activeElement; + } catch ( err ) { } +} + +/* + * Helper functions for managing events -- not part of the public interface. + * Props to Dean Edwards' addEvent library for many of the ideas. + */ +jQuery.event = { + + global: {}, + + add: function( elem, types, handler, data, selector ) { + var tmp, events, t, handleObjIn, + special, eventHandle, handleObj, + handlers, type, namespaces, origType, + elemData = jQuery._data( elem ); + + // Don't attach events to noData or text/comment nodes (but allow plain objects) + if ( !elemData ) { + return; + } + + // Caller can pass in an object of custom data in lieu of the handler + if ( handler.handler ) { + handleObjIn = handler; + handler = handleObjIn.handler; + selector = handleObjIn.selector; + } + + // Make sure that the handler has a unique ID, used to find/remove it later + if ( !handler.guid ) { + handler.guid = jQuery.guid++; + } + + // Init the element's event structure and main handler, if this is the first + if ( !(events = elemData.events) ) { + events = elemData.events = {}; + } + if ( !(eventHandle = elemData.handle) ) { + eventHandle = elemData.handle = function( e ) { + // Discard the second event of a jQuery.event.trigger() and + // when an event is called after a page has unloaded + return typeof jQuery !== strundefined && (!e || jQuery.event.triggered !== e.type) ? + jQuery.event.dispatch.apply( eventHandle.elem, arguments ) : + undefined; + }; + // Add elem as a property of the handle fn to prevent a memory leak with IE non-native events + eventHandle.elem = elem; + } + + // Handle multiple events separated by a space + types = ( types || "" ).match( rnotwhite ) || [ "" ]; + t = types.length; + while ( t-- ) { + tmp = rtypenamespace.exec( types[t] ) || []; + type = origType = tmp[1]; + namespaces = ( tmp[2] || "" ).split( "." ).sort(); + + // There *must* be a type, no attaching namespace-only handlers + if ( !type ) { + continue; + } + + // If event changes its type, use the special event handlers for the changed type + special = jQuery.event.special[ type ] || {}; + + // If selector defined, determine special event api type, otherwise given type + type = ( selector ? special.delegateType : special.bindType ) || type; + + // Update special based on newly reset type + special = jQuery.event.special[ type ] || {}; + + // handleObj is passed to all event handlers + handleObj = jQuery.extend({ + type: type, + origType: origType, + data: data, + handler: handler, + guid: handler.guid, + selector: selector, + needsContext: selector && jQuery.expr.match.needsContext.test( selector ), + namespace: namespaces.join(".") + }, handleObjIn ); + + // Init the event handler queue if we're the first + if ( !(handlers = events[ type ]) ) { + handlers = events[ type ] = []; + handlers.delegateCount = 0; + + // Only use addEventListener/attachEvent if the special events handler returns false + if ( !special.setup || special.setup.call( elem, data, namespaces, eventHandle ) === false ) { + // Bind the global event handler to the element + if ( elem.addEventListener ) { + elem.addEventListener( type, eventHandle, false ); + + } else if ( elem.attachEvent ) { + elem.attachEvent( "on" + type, eventHandle ); + } + } + } + + if ( special.add ) { + special.add.call( elem, handleObj ); + + if ( !handleObj.handler.guid ) { + handleObj.handler.guid = handler.guid; + } + } + + // Add to the element's handler list, delegates in front + if ( selector ) { + handlers.splice( handlers.delegateCount++, 0, handleObj ); + } else { + handlers.push( handleObj ); + } + + // Keep track of which events have ever been used, for event optimization + jQuery.event.global[ type ] = true; + } + + // Nullify elem to prevent memory leaks in IE + elem = null; + }, + + // Detach an event or set of events from an element + remove: function( elem, types, handler, selector, mappedTypes ) { + var j, handleObj, tmp, + origCount, t, events, + special, handlers, type, + namespaces, origType, + elemData = jQuery.hasData( elem ) && jQuery._data( elem ); + + if ( !elemData || !(events = elemData.events) ) { + return; + } + + // Once for each type.namespace in types; type may be omitted + types = ( types || "" ).match( rnotwhite ) || [ "" ]; + t = types.length; + while ( t-- ) { + tmp = rtypenamespace.exec( types[t] ) || []; + type = origType = tmp[1]; + namespaces = ( tmp[2] || "" ).split( "." ).sort(); + + // Unbind all events (on this namespace, if provided) for the element + if ( !type ) { + for ( type in events ) { + jQuery.event.remove( elem, type + types[ t ], handler, selector, true ); + } + continue; + } + + special = jQuery.event.special[ type ] || {}; + type = ( selector ? special.delegateType : special.bindType ) || type; + handlers = events[ type ] || []; + tmp = tmp[2] && new RegExp( "(^|\\.)" + namespaces.join("\\.(?:.*\\.|)") + "(\\.|$)" ); + + // Remove matching events + origCount = j = handlers.length; + while ( j-- ) { + handleObj = handlers[ j ]; + + if ( ( mappedTypes || origType === handleObj.origType ) && + ( !handler || handler.guid === handleObj.guid ) && + ( !tmp || tmp.test( handleObj.namespace ) ) && + ( !selector || selector === handleObj.selector || selector === "**" && handleObj.selector ) ) { + handlers.splice( j, 1 ); + + if ( handleObj.selector ) { + handlers.delegateCount--; + } + if ( special.remove ) { + special.remove.call( elem, handleObj ); + } + } + } + + // Remove generic event handler if we removed something and no more handlers exist + // (avoids potential for endless recursion during removal of special event handlers) + if ( origCount && !handlers.length ) { + if ( !special.teardown || special.teardown.call( elem, namespaces, elemData.handle ) === false ) { + jQuery.removeEvent( elem, type, elemData.handle ); + } + + delete events[ type ]; + } + } + + // Remove the expando if it's no longer used + if ( jQuery.isEmptyObject( events ) ) { + delete elemData.handle; + + // removeData also checks for emptiness and clears the expando if empty + // so use it instead of delete + jQuery._removeData( elem, "events" ); + } + }, + + trigger: function( event, data, elem, onlyHandlers ) { + var handle, ontype, cur, + bubbleType, special, tmp, i, + eventPath = [ elem || document ], + type = hasOwn.call( event, "type" ) ? event.type : event, + namespaces = hasOwn.call( event, "namespace" ) ? event.namespace.split(".") : []; + + cur = tmp = elem = elem || document; + + // Don't do events on text and comment nodes + if ( elem.nodeType === 3 || elem.nodeType === 8 ) { + return; + } + + // focus/blur morphs to focusin/out; ensure we're not firing them right now + if ( rfocusMorph.test( type + jQuery.event.triggered ) ) { + return; + } + + if ( type.indexOf(".") >= 0 ) { + // Namespaced trigger; create a regexp to match event type in handle() + namespaces = type.split("."); + type = namespaces.shift(); + namespaces.sort(); + } + ontype = type.indexOf(":") < 0 && "on" + type; + + // Caller can pass in a jQuery.Event object, Object, or just an event type string + event = event[ jQuery.expando ] ? + event : + new jQuery.Event( type, typeof event === "object" && event ); + + // Trigger bitmask: & 1 for native handlers; & 2 for jQuery (always true) + event.isTrigger = onlyHandlers ? 2 : 3; + event.namespace = namespaces.join("."); + event.namespace_re = event.namespace ? + new RegExp( "(^|\\.)" + namespaces.join("\\.(?:.*\\.|)") + "(\\.|$)" ) : + null; + + // Clean up the event in case it is being reused + event.result = undefined; + if ( !event.target ) { + event.target = elem; + } + + // Clone any incoming data and prepend the event, creating the handler arg list + data = data == null ? + [ event ] : + jQuery.makeArray( data, [ event ] ); + + // Allow special events to draw outside the lines + special = jQuery.event.special[ type ] || {}; + if ( !onlyHandlers && special.trigger && special.trigger.apply( elem, data ) === false ) { + return; + } + + // Determine event propagation path in advance, per W3C events spec (#9951) + // Bubble up to document, then to window; watch for a global ownerDocument var (#9724) + if ( !onlyHandlers && !special.noBubble && !jQuery.isWindow( elem ) ) { + + bubbleType = special.delegateType || type; + if ( !rfocusMorph.test( bubbleType + type ) ) { + cur = cur.parentNode; + } + for ( ; cur; cur = cur.parentNode ) { + eventPath.push( cur ); + tmp = cur; + } + + // Only add window if we got to document (e.g., not plain obj or detached DOM) + if ( tmp === (elem.ownerDocument || document) ) { + eventPath.push( tmp.defaultView || tmp.parentWindow || window ); + } + } + + // Fire handlers on the event path + i = 0; + while ( (cur = eventPath[i++]) && !event.isPropagationStopped() ) { + + event.type = i > 1 ? + bubbleType : + special.bindType || type; + + // jQuery handler + handle = ( jQuery._data( cur, "events" ) || {} )[ event.type ] && jQuery._data( cur, "handle" ); + if ( handle ) { + handle.apply( cur, data ); + } + + // Native handler + handle = ontype && cur[ ontype ]; + if ( handle && handle.apply && jQuery.acceptData( cur ) ) { + event.result = handle.apply( cur, data ); + if ( event.result === false ) { + event.preventDefault(); + } + } + } + event.type = type; + + // If nobody prevented the default action, do it now + if ( !onlyHandlers && !event.isDefaultPrevented() ) { + + if ( (!special._default || special._default.apply( eventPath.pop(), data ) === false) && + jQuery.acceptData( elem ) ) { + + // Call a native DOM method on the target with the same name name as the event. + // Can't use an .isFunction() check here because IE6/7 fails that test. + // Don't do default actions on window, that's where global variables be (#6170) + if ( ontype && elem[ type ] && !jQuery.isWindow( elem ) ) { + + // Don't re-trigger an onFOO event when we call its FOO() method + tmp = elem[ ontype ]; + + if ( tmp ) { + elem[ ontype ] = null; + } + + // Prevent re-triggering of the same event, since we already bubbled it above + jQuery.event.triggered = type; + try { + elem[ type ](); + } catch ( e ) { + // IE<9 dies on focus/blur to hidden element (#1486,#12518) + // only reproducible on winXP IE8 native, not IE9 in IE8 mode + } + jQuery.event.triggered = undefined; + + if ( tmp ) { + elem[ ontype ] = tmp; + } + } + } + } + + return event.result; + }, + + dispatch: function( event ) { + + // Make a writable jQuery.Event from the native event object + event = jQuery.event.fix( event ); + + var i, ret, handleObj, matched, j, + handlerQueue = [], + args = slice.call( arguments ), + handlers = ( jQuery._data( this, "events" ) || {} )[ event.type ] || [], + special = jQuery.event.special[ event.type ] || {}; + + // Use the fix-ed jQuery.Event rather than the (read-only) native event + args[0] = event; + event.delegateTarget = this; + + // Call the preDispatch hook for the mapped type, and let it bail if desired + if ( special.preDispatch && special.preDispatch.call( this, event ) === false ) { + return; + } + + // Determine handlers + handlerQueue = jQuery.event.handlers.call( this, event, handlers ); + + // Run delegates first; they may want to stop propagation beneath us + i = 0; + while ( (matched = handlerQueue[ i++ ]) && !event.isPropagationStopped() ) { + event.currentTarget = matched.elem; + + j = 0; + while ( (handleObj = matched.handlers[ j++ ]) && !event.isImmediatePropagationStopped() ) { + + // Triggered event must either 1) have no namespace, or + // 2) have namespace(s) a subset or equal to those in the bound event (both can have no namespace). + if ( !event.namespace_re || event.namespace_re.test( handleObj.namespace ) ) { + + event.handleObj = handleObj; + event.data = handleObj.data; + + ret = ( (jQuery.event.special[ handleObj.origType ] || {}).handle || handleObj.handler ) + .apply( matched.elem, args ); + + if ( ret !== undefined ) { + if ( (event.result = ret) === false ) { + event.preventDefault(); + event.stopPropagation(); + } + } + } + } + } + + // Call the postDispatch hook for the mapped type + if ( special.postDispatch ) { + special.postDispatch.call( this, event ); + } + + return event.result; + }, + + handlers: function( event, handlers ) { + var sel, handleObj, matches, i, + handlerQueue = [], + delegateCount = handlers.delegateCount, + cur = event.target; + + // Find delegate handlers + // Black-hole SVG instance trees (#13180) + // Avoid non-left-click bubbling in Firefox (#3861) + if ( delegateCount && cur.nodeType && (!event.button || event.type !== "click") ) { + + /* jshint eqeqeq: false */ + for ( ; cur != this; cur = cur.parentNode || this ) { + /* jshint eqeqeq: true */ + + // Don't check non-elements (#13208) + // Don't process clicks on disabled elements (#6911, #8165, #11382, #11764) + if ( cur.nodeType === 1 && (cur.disabled !== true || event.type !== "click") ) { + matches = []; + for ( i = 0; i < delegateCount; i++ ) { + handleObj = handlers[ i ]; + + // Don't conflict with Object.prototype properties (#13203) + sel = handleObj.selector + " "; + + if ( matches[ sel ] === undefined ) { + matches[ sel ] = handleObj.needsContext ? + jQuery( sel, this ).index( cur ) >= 0 : + jQuery.find( sel, this, null, [ cur ] ).length; + } + if ( matches[ sel ] ) { + matches.push( handleObj ); + } + } + if ( matches.length ) { + handlerQueue.push({ elem: cur, handlers: matches }); + } + } + } + } + + // Add the remaining (directly-bound) handlers + if ( delegateCount < handlers.length ) { + handlerQueue.push({ elem: this, handlers: handlers.slice( delegateCount ) }); + } + + return handlerQueue; + }, + + fix: function( event ) { + if ( event[ jQuery.expando ] ) { + return event; + } + + // Create a writable copy of the event object and normalize some properties + var i, prop, copy, + type = event.type, + originalEvent = event, + fixHook = this.fixHooks[ type ]; + + if ( !fixHook ) { + this.fixHooks[ type ] = fixHook = + rmouseEvent.test( type ) ? this.mouseHooks : + rkeyEvent.test( type ) ? this.keyHooks : + {}; + } + copy = fixHook.props ? this.props.concat( fixHook.props ) : this.props; + + event = new jQuery.Event( originalEvent ); + + i = copy.length; + while ( i-- ) { + prop = copy[ i ]; + event[ prop ] = originalEvent[ prop ]; + } + + // Support: IE<9 + // Fix target property (#1925) + if ( !event.target ) { + event.target = originalEvent.srcElement || document; + } + + // Support: Chrome 23+, Safari? + // Target should not be a text node (#504, #13143) + if ( event.target.nodeType === 3 ) { + event.target = event.target.parentNode; + } + + // Support: IE<9 + // For mouse/key events, metaKey==false if it's undefined (#3368, #11328) + event.metaKey = !!event.metaKey; + + return fixHook.filter ? fixHook.filter( event, originalEvent ) : event; + }, + + // Includes some event props shared by KeyEvent and MouseEvent + props: "altKey bubbles cancelable ctrlKey currentTarget eventPhase metaKey relatedTarget shiftKey target timeStamp view which".split(" "), + + fixHooks: {}, + + keyHooks: { + props: "char charCode key keyCode".split(" "), + filter: function( event, original ) { + + // Add which for key events + if ( event.which == null ) { + event.which = original.charCode != null ? original.charCode : original.keyCode; + } + + return event; + } + }, + + mouseHooks: { + props: "button buttons clientX clientY fromElement offsetX offsetY pageX pageY screenX screenY toElement".split(" "), + filter: function( event, original ) { + var body, eventDoc, doc, + button = original.button, + fromElement = original.fromElement; + + // Calculate pageX/Y if missing and clientX/Y available + if ( event.pageX == null && original.clientX != null ) { + eventDoc = event.target.ownerDocument || document; + doc = eventDoc.documentElement; + body = eventDoc.body; + + event.pageX = original.clientX + ( doc && doc.scrollLeft || body && body.scrollLeft || 0 ) - ( doc && doc.clientLeft || body && body.clientLeft || 0 ); + event.pageY = original.clientY + ( doc && doc.scrollTop || body && body.scrollTop || 0 ) - ( doc && doc.clientTop || body && body.clientTop || 0 ); + } + + // Add relatedTarget, if necessary + if ( !event.relatedTarget && fromElement ) { + event.relatedTarget = fromElement === event.target ? original.toElement : fromElement; + } + + // Add which for click: 1 === left; 2 === middle; 3 === right + // Note: button is not normalized, so don't use it + if ( !event.which && button !== undefined ) { + event.which = ( button & 1 ? 1 : ( button & 2 ? 3 : ( button & 4 ? 2 : 0 ) ) ); + } + + return event; + } + }, + + special: { + load: { + // Prevent triggered image.load events from bubbling to window.load + noBubble: true + }, + focus: { + // Fire native event if possible so blur/focus sequence is correct + trigger: function() { + if ( this !== safeActiveElement() && this.focus ) { + try { + this.focus(); + return false; + } catch ( e ) { + // Support: IE<9 + // If we error on focus to hidden element (#1486, #12518), + // let .trigger() run the handlers + } + } + }, + delegateType: "focusin" + }, + blur: { + trigger: function() { + if ( this === safeActiveElement() && this.blur ) { + this.blur(); + return false; + } + }, + delegateType: "focusout" + }, + click: { + // For checkbox, fire native event so checked state will be right + trigger: function() { + if ( jQuery.nodeName( this, "input" ) && this.type === "checkbox" && this.click ) { + this.click(); + return false; + } + }, + + // For cross-browser consistency, don't fire native .click() on links + _default: function( event ) { + return jQuery.nodeName( event.target, "a" ); + } + }, + + beforeunload: { + postDispatch: function( event ) { + + // Support: Firefox 20+ + // Firefox doesn't alert if the returnValue field is not set. + if ( event.result !== undefined && event.originalEvent ) { + event.originalEvent.returnValue = event.result; + } + } + } + }, + + simulate: function( type, elem, event, bubble ) { + // Piggyback on a donor event to simulate a different one. + // Fake originalEvent to avoid donor's stopPropagation, but if the + // simulated event prevents default then we do the same on the donor. + var e = jQuery.extend( + new jQuery.Event(), + event, + { + type: type, + isSimulated: true, + originalEvent: {} + } + ); + if ( bubble ) { + jQuery.event.trigger( e, null, elem ); + } else { + jQuery.event.dispatch.call( elem, e ); + } + if ( e.isDefaultPrevented() ) { + event.preventDefault(); + } + } +}; + +jQuery.removeEvent = document.removeEventListener ? + function( elem, type, handle ) { + if ( elem.removeEventListener ) { + elem.removeEventListener( type, handle, false ); + } + } : + function( elem, type, handle ) { + var name = "on" + type; + + if ( elem.detachEvent ) { + + // #8545, #7054, preventing memory leaks for custom events in IE6-8 + // detachEvent needed property on element, by name of that event, to properly expose it to GC + if ( typeof elem[ name ] === strundefined ) { + elem[ name ] = null; + } + + elem.detachEvent( name, handle ); + } + }; + +jQuery.Event = function( src, props ) { + // Allow instantiation without the 'new' keyword + if ( !(this instanceof jQuery.Event) ) { + return new jQuery.Event( src, props ); + } + + // Event object + if ( src && src.type ) { + this.originalEvent = src; + this.type = src.type; + + // Events bubbling up the document may have been marked as prevented + // by a handler lower down the tree; reflect the correct value. + this.isDefaultPrevented = src.defaultPrevented || + src.defaultPrevented === undefined && + // Support: IE < 9, Android < 4.0 + src.returnValue === false ? + returnTrue : + returnFalse; + + // Event type + } else { + this.type = src; + } + + // Put explicitly provided properties onto the event object + if ( props ) { + jQuery.extend( this, props ); + } + + // Create a timestamp if incoming event doesn't have one + this.timeStamp = src && src.timeStamp || jQuery.now(); + + // Mark it as fixed + this[ jQuery.expando ] = true; +}; + +// jQuery.Event is based on DOM3 Events as specified by the ECMAScript Language Binding +// http://www.w3.org/TR/2003/WD-DOM-Level-3-Events-20030331/ecma-script-binding.html +jQuery.Event.prototype = { + isDefaultPrevented: returnFalse, + isPropagationStopped: returnFalse, + isImmediatePropagationStopped: returnFalse, + + preventDefault: function() { + var e = this.originalEvent; + + this.isDefaultPrevented = returnTrue; + if ( !e ) { + return; + } + + // If preventDefault exists, run it on the original event + if ( e.preventDefault ) { + e.preventDefault(); + + // Support: IE + // Otherwise set the returnValue property of the original event to false + } else { + e.returnValue = false; + } + }, + stopPropagation: function() { + var e = this.originalEvent; + + this.isPropagationStopped = returnTrue; + if ( !e ) { + return; + } + // If stopPropagation exists, run it on the original event + if ( e.stopPropagation ) { + e.stopPropagation(); + } + + // Support: IE + // Set the cancelBubble property of the original event to true + e.cancelBubble = true; + }, + stopImmediatePropagation: function() { + var e = this.originalEvent; + + this.isImmediatePropagationStopped = returnTrue; + + if ( e && e.stopImmediatePropagation ) { + e.stopImmediatePropagation(); + } + + this.stopPropagation(); + } +}; + +// Create mouseenter/leave events using mouseover/out and event-time checks +jQuery.each({ + mouseenter: "mouseover", + mouseleave: "mouseout", + pointerenter: "pointerover", + pointerleave: "pointerout" +}, function( orig, fix ) { + jQuery.event.special[ orig ] = { + delegateType: fix, + bindType: fix, + + handle: function( event ) { + var ret, + target = this, + related = event.relatedTarget, + handleObj = event.handleObj; + + // For mousenter/leave call the handler if related is outside the target. + // NB: No relatedTarget if the mouse left/entered the browser window + if ( !related || (related !== target && !jQuery.contains( target, related )) ) { + event.type = handleObj.origType; + ret = handleObj.handler.apply( this, arguments ); + event.type = fix; + } + return ret; + } + }; +}); + +// IE submit delegation +if ( !support.submitBubbles ) { + + jQuery.event.special.submit = { + setup: function() { + // Only need this for delegated form submit events + if ( jQuery.nodeName( this, "form" ) ) { + return false; + } + + // Lazy-add a submit handler when a descendant form may potentially be submitted + jQuery.event.add( this, "click._submit keypress._submit", function( e ) { + // Node name check avoids a VML-related crash in IE (#9807) + var elem = e.target, + form = jQuery.nodeName( elem, "input" ) || jQuery.nodeName( elem, "button" ) ? elem.form : undefined; + if ( form && !jQuery._data( form, "submitBubbles" ) ) { + jQuery.event.add( form, "submit._submit", function( event ) { + event._submit_bubble = true; + }); + jQuery._data( form, "submitBubbles", true ); + } + }); + // return undefined since we don't need an event listener + }, + + postDispatch: function( event ) { + // If form was submitted by the user, bubble the event up the tree + if ( event._submit_bubble ) { + delete event._submit_bubble; + if ( this.parentNode && !event.isTrigger ) { + jQuery.event.simulate( "submit", this.parentNode, event, true ); + } + } + }, + + teardown: function() { + // Only need this for delegated form submit events + if ( jQuery.nodeName( this, "form" ) ) { + return false; + } + + // Remove delegated handlers; cleanData eventually reaps submit handlers attached above + jQuery.event.remove( this, "._submit" ); + } + }; +} + +// IE change delegation and checkbox/radio fix +if ( !support.changeBubbles ) { + + jQuery.event.special.change = { + + setup: function() { + + if ( rformElems.test( this.nodeName ) ) { + // IE doesn't fire change on a check/radio until blur; trigger it on click + // after a propertychange. Eat the blur-change in special.change.handle. + // This still fires onchange a second time for check/radio after blur. + if ( this.type === "checkbox" || this.type === "radio" ) { + jQuery.event.add( this, "propertychange._change", function( event ) { + if ( event.originalEvent.propertyName === "checked" ) { + this._just_changed = true; + } + }); + jQuery.event.add( this, "click._change", function( event ) { + if ( this._just_changed && !event.isTrigger ) { + this._just_changed = false; + } + // Allow triggered, simulated change events (#11500) + jQuery.event.simulate( "change", this, event, true ); + }); + } + return false; + } + // Delegated event; lazy-add a change handler on descendant inputs + jQuery.event.add( this, "beforeactivate._change", function( e ) { + var elem = e.target; + + if ( rformElems.test( elem.nodeName ) && !jQuery._data( elem, "changeBubbles" ) ) { + jQuery.event.add( elem, "change._change", function( event ) { + if ( this.parentNode && !event.isSimulated && !event.isTrigger ) { + jQuery.event.simulate( "change", this.parentNode, event, true ); + } + }); + jQuery._data( elem, "changeBubbles", true ); + } + }); + }, + + handle: function( event ) { + var elem = event.target; + + // Swallow native change events from checkbox/radio, we already triggered them above + if ( this !== elem || event.isSimulated || event.isTrigger || (elem.type !== "radio" && elem.type !== "checkbox") ) { + return event.handleObj.handler.apply( this, arguments ); + } + }, + + teardown: function() { + jQuery.event.remove( this, "._change" ); + + return !rformElems.test( this.nodeName ); + } + }; +} + +// Create "bubbling" focus and blur events +if ( !support.focusinBubbles ) { + jQuery.each({ focus: "focusin", blur: "focusout" }, function( orig, fix ) { + + // Attach a single capturing handler on the document while someone wants focusin/focusout + var handler = function( event ) { + jQuery.event.simulate( fix, event.target, jQuery.event.fix( event ), true ); + }; + + jQuery.event.special[ fix ] = { + setup: function() { + var doc = this.ownerDocument || this, + attaches = jQuery._data( doc, fix ); + + if ( !attaches ) { + doc.addEventListener( orig, handler, true ); + } + jQuery._data( doc, fix, ( attaches || 0 ) + 1 ); + }, + teardown: function() { + var doc = this.ownerDocument || this, + attaches = jQuery._data( doc, fix ) - 1; + + if ( !attaches ) { + doc.removeEventListener( orig, handler, true ); + jQuery._removeData( doc, fix ); + } else { + jQuery._data( doc, fix, attaches ); + } + } + }; + }); +} + +jQuery.fn.extend({ + + on: function( types, selector, data, fn, /*INTERNAL*/ one ) { + var type, origFn; + + // Types can be a map of types/handlers + if ( typeof types === "object" ) { + // ( types-Object, selector, data ) + if ( typeof selector !== "string" ) { + // ( types-Object, data ) + data = data || selector; + selector = undefined; + } + for ( type in types ) { + this.on( type, selector, data, types[ type ], one ); + } + return this; + } + + if ( data == null && fn == null ) { + // ( types, fn ) + fn = selector; + data = selector = undefined; + } else if ( fn == null ) { + if ( typeof selector === "string" ) { + // ( types, selector, fn ) + fn = data; + data = undefined; + } else { + // ( types, data, fn ) + fn = data; + data = selector; + selector = undefined; + } + } + if ( fn === false ) { + fn = returnFalse; + } else if ( !fn ) { + return this; + } + + if ( one === 1 ) { + origFn = fn; + fn = function( event ) { + // Can use an empty set, since event contains the info + jQuery().off( event ); + return origFn.apply( this, arguments ); + }; + // Use same guid so caller can remove using origFn + fn.guid = origFn.guid || ( origFn.guid = jQuery.guid++ ); + } + return this.each( function() { + jQuery.event.add( this, types, fn, data, selector ); + }); + }, + one: function( types, selector, data, fn ) { + return this.on( types, selector, data, fn, 1 ); + }, + off: function( types, selector, fn ) { + var handleObj, type; + if ( types && types.preventDefault && types.handleObj ) { + // ( event ) dispatched jQuery.Event + handleObj = types.handleObj; + jQuery( types.delegateTarget ).off( + handleObj.namespace ? handleObj.origType + "." + handleObj.namespace : handleObj.origType, + handleObj.selector, + handleObj.handler + ); + return this; + } + if ( typeof types === "object" ) { + // ( types-object [, selector] ) + for ( type in types ) { + this.off( type, selector, types[ type ] ); + } + return this; + } + if ( selector === false || typeof selector === "function" ) { + // ( types [, fn] ) + fn = selector; + selector = undefined; + } + if ( fn === false ) { + fn = returnFalse; + } + return this.each(function() { + jQuery.event.remove( this, types, fn, selector ); + }); + }, + + trigger: function( type, data ) { + return this.each(function() { + jQuery.event.trigger( type, data, this ); + }); + }, + triggerHandler: function( type, data ) { + var elem = this[0]; + if ( elem ) { + return jQuery.event.trigger( type, data, elem, true ); + } + } +}); + + +function createSafeFragment( document ) { + var list = nodeNames.split( "|" ), + safeFrag = document.createDocumentFragment(); + + if ( safeFrag.createElement ) { + while ( list.length ) { + safeFrag.createElement( + list.pop() + ); + } + } + return safeFrag; +} + +var nodeNames = "abbr|article|aside|audio|bdi|canvas|data|datalist|details|figcaption|figure|footer|" + + "header|hgroup|mark|meter|nav|output|progress|section|summary|time|video", + rinlinejQuery = / jQuery\d+="(?:null|\d+)"/g, + rnoshimcache = new RegExp("<(?:" + nodeNames + ")[\\s/>]", "i"), + rleadingWhitespace = /^\s+/, + rxhtmlTag = /<(?!area|br|col|embed|hr|img|input|link|meta|param)(([\w:]+)[^>]*)\/>/gi, + rtagName = /<([\w:]+)/, + rtbody = /\s*$/g, + + // We have to close these tags to support XHTML (#13200) + wrapMap = { + option: [ 1, "" ], + legend: [ 1, "
", "
" ], + area: [ 1, "", "" ], + param: [ 1, "", "" ], + thead: [ 1, "", "
" ], + tr: [ 2, "", "
" ], + col: [ 2, "", "
" ], + td: [ 3, "", "
" ], + + // IE6-8 can't serialize link, script, style, or any html5 (NoScope) tags, + // unless wrapped in a div with non-breaking characters in front of it. + _default: support.htmlSerialize ? [ 0, "", "" ] : [ 1, "X
", "
" ] + }, + safeFragment = createSafeFragment( document ), + fragmentDiv = safeFragment.appendChild( document.createElement("div") ); + +wrapMap.optgroup = wrapMap.option; +wrapMap.tbody = wrapMap.tfoot = wrapMap.colgroup = wrapMap.caption = wrapMap.thead; +wrapMap.th = wrapMap.td; + +function getAll( context, tag ) { + var elems, elem, + i = 0, + found = typeof context.getElementsByTagName !== strundefined ? context.getElementsByTagName( tag || "*" ) : + typeof context.querySelectorAll !== strundefined ? context.querySelectorAll( tag || "*" ) : + undefined; + + if ( !found ) { + for ( found = [], elems = context.childNodes || context; (elem = elems[i]) != null; i++ ) { + if ( !tag || jQuery.nodeName( elem, tag ) ) { + found.push( elem ); + } else { + jQuery.merge( found, getAll( elem, tag ) ); + } + } + } + + return tag === undefined || tag && jQuery.nodeName( context, tag ) ? + jQuery.merge( [ context ], found ) : + found; +} + +// Used in buildFragment, fixes the defaultChecked property +function fixDefaultChecked( elem ) { + if ( rcheckableType.test( elem.type ) ) { + elem.defaultChecked = elem.checked; + } +} + +// Support: IE<8 +// Manipulating tables requires a tbody +function manipulationTarget( elem, content ) { + return jQuery.nodeName( elem, "table" ) && + jQuery.nodeName( content.nodeType !== 11 ? content : content.firstChild, "tr" ) ? + + elem.getElementsByTagName("tbody")[0] || + elem.appendChild( elem.ownerDocument.createElement("tbody") ) : + elem; +} + +// Replace/restore the type attribute of script elements for safe DOM manipulation +function disableScript( elem ) { + elem.type = (jQuery.find.attr( elem, "type" ) !== null) + "/" + elem.type; + return elem; +} +function restoreScript( elem ) { + var match = rscriptTypeMasked.exec( elem.type ); + if ( match ) { + elem.type = match[1]; + } else { + elem.removeAttribute("type"); + } + return elem; +} + +// Mark scripts as having already been evaluated +function setGlobalEval( elems, refElements ) { + var elem, + i = 0; + for ( ; (elem = elems[i]) != null; i++ ) { + jQuery._data( elem, "globalEval", !refElements || jQuery._data( refElements[i], "globalEval" ) ); + } +} + +function cloneCopyEvent( src, dest ) { + + if ( dest.nodeType !== 1 || !jQuery.hasData( src ) ) { + return; + } + + var type, i, l, + oldData = jQuery._data( src ), + curData = jQuery._data( dest, oldData ), + events = oldData.events; + + if ( events ) { + delete curData.handle; + curData.events = {}; + + for ( type in events ) { + for ( i = 0, l = events[ type ].length; i < l; i++ ) { + jQuery.event.add( dest, type, events[ type ][ i ] ); + } + } + } + + // make the cloned public data object a copy from the original + if ( curData.data ) { + curData.data = jQuery.extend( {}, curData.data ); + } +} + +function fixCloneNodeIssues( src, dest ) { + var nodeName, e, data; + + // We do not need to do anything for non-Elements + if ( dest.nodeType !== 1 ) { + return; + } + + nodeName = dest.nodeName.toLowerCase(); + + // IE6-8 copies events bound via attachEvent when using cloneNode. + if ( !support.noCloneEvent && dest[ jQuery.expando ] ) { + data = jQuery._data( dest ); + + for ( e in data.events ) { + jQuery.removeEvent( dest, e, data.handle ); + } + + // Event data gets referenced instead of copied if the expando gets copied too + dest.removeAttribute( jQuery.expando ); + } + + // IE blanks contents when cloning scripts, and tries to evaluate newly-set text + if ( nodeName === "script" && dest.text !== src.text ) { + disableScript( dest ).text = src.text; + restoreScript( dest ); + + // IE6-10 improperly clones children of object elements using classid. + // IE10 throws NoModificationAllowedError if parent is null, #12132. + } else if ( nodeName === "object" ) { + if ( dest.parentNode ) { + dest.outerHTML = src.outerHTML; + } + + // This path appears unavoidable for IE9. When cloning an object + // element in IE9, the outerHTML strategy above is not sufficient. + // If the src has innerHTML and the destination does not, + // copy the src.innerHTML into the dest.innerHTML. #10324 + if ( support.html5Clone && ( src.innerHTML && !jQuery.trim(dest.innerHTML) ) ) { + dest.innerHTML = src.innerHTML; + } + + } else if ( nodeName === "input" && rcheckableType.test( src.type ) ) { + // IE6-8 fails to persist the checked state of a cloned checkbox + // or radio button. Worse, IE6-7 fail to give the cloned element + // a checked appearance if the defaultChecked value isn't also set + + dest.defaultChecked = dest.checked = src.checked; + + // IE6-7 get confused and end up setting the value of a cloned + // checkbox/radio button to an empty string instead of "on" + if ( dest.value !== src.value ) { + dest.value = src.value; + } + + // IE6-8 fails to return the selected option to the default selected + // state when cloning options + } else if ( nodeName === "option" ) { + dest.defaultSelected = dest.selected = src.defaultSelected; + + // IE6-8 fails to set the defaultValue to the correct value when + // cloning other types of input fields + } else if ( nodeName === "input" || nodeName === "textarea" ) { + dest.defaultValue = src.defaultValue; + } +} + +jQuery.extend({ + clone: function( elem, dataAndEvents, deepDataAndEvents ) { + var destElements, node, clone, i, srcElements, + inPage = jQuery.contains( elem.ownerDocument, elem ); + + if ( support.html5Clone || jQuery.isXMLDoc(elem) || !rnoshimcache.test( "<" + elem.nodeName + ">" ) ) { + clone = elem.cloneNode( true ); + + // IE<=8 does not properly clone detached, unknown element nodes + } else { + fragmentDiv.innerHTML = elem.outerHTML; + fragmentDiv.removeChild( clone = fragmentDiv.firstChild ); + } + + if ( (!support.noCloneEvent || !support.noCloneChecked) && + (elem.nodeType === 1 || elem.nodeType === 11) && !jQuery.isXMLDoc(elem) ) { + + // We eschew Sizzle here for performance reasons: http://jsperf.com/getall-vs-sizzle/2 + destElements = getAll( clone ); + srcElements = getAll( elem ); + + // Fix all IE cloning issues + for ( i = 0; (node = srcElements[i]) != null; ++i ) { + // Ensure that the destination node is not null; Fixes #9587 + if ( destElements[i] ) { + fixCloneNodeIssues( node, destElements[i] ); + } + } + } + + // Copy the events from the original to the clone + if ( dataAndEvents ) { + if ( deepDataAndEvents ) { + srcElements = srcElements || getAll( elem ); + destElements = destElements || getAll( clone ); + + for ( i = 0; (node = srcElements[i]) != null; i++ ) { + cloneCopyEvent( node, destElements[i] ); + } + } else { + cloneCopyEvent( elem, clone ); + } + } + + // Preserve script evaluation history + destElements = getAll( clone, "script" ); + if ( destElements.length > 0 ) { + setGlobalEval( destElements, !inPage && getAll( elem, "script" ) ); + } + + destElements = srcElements = node = null; + + // Return the cloned set + return clone; + }, + + buildFragment: function( elems, context, scripts, selection ) { + var j, elem, contains, + tmp, tag, tbody, wrap, + l = elems.length, + + // Ensure a safe fragment + safe = createSafeFragment( context ), + + nodes = [], + i = 0; + + for ( ; i < l; i++ ) { + elem = elems[ i ]; + + if ( elem || elem === 0 ) { + + // Add nodes directly + if ( jQuery.type( elem ) === "object" ) { + jQuery.merge( nodes, elem.nodeType ? [ elem ] : elem ); + + // Convert non-html into a text node + } else if ( !rhtml.test( elem ) ) { + nodes.push( context.createTextNode( elem ) ); + + // Convert html into DOM nodes + } else { + tmp = tmp || safe.appendChild( context.createElement("div") ); + + // Deserialize a standard representation + tag = (rtagName.exec( elem ) || [ "", "" ])[ 1 ].toLowerCase(); + wrap = wrapMap[ tag ] || wrapMap._default; + + tmp.innerHTML = wrap[1] + elem.replace( rxhtmlTag, "<$1>" ) + wrap[2]; + + // Descend through wrappers to the right content + j = wrap[0]; + while ( j-- ) { + tmp = tmp.lastChild; + } + + // Manually add leading whitespace removed by IE + if ( !support.leadingWhitespace && rleadingWhitespace.test( elem ) ) { + nodes.push( context.createTextNode( rleadingWhitespace.exec( elem )[0] ) ); + } + + // Remove IE's autoinserted from table fragments + if ( !support.tbody ) { + + // String was a , *may* have spurious + elem = tag === "table" && !rtbody.test( elem ) ? + tmp.firstChild : + + // String was a bare or + wrap[1] === "
" && !rtbody.test( elem ) ? + tmp : + 0; + + j = elem && elem.childNodes.length; + while ( j-- ) { + if ( jQuery.nodeName( (tbody = elem.childNodes[j]), "tbody" ) && !tbody.childNodes.length ) { + elem.removeChild( tbody ); + } + } + } + + jQuery.merge( nodes, tmp.childNodes ); + + // Fix #12392 for WebKit and IE > 9 + tmp.textContent = ""; + + // Fix #12392 for oldIE + while ( tmp.firstChild ) { + tmp.removeChild( tmp.firstChild ); + } + + // Remember the top-level container for proper cleanup + tmp = safe.lastChild; + } + } + } + + // Fix #11356: Clear elements from fragment + if ( tmp ) { + safe.removeChild( tmp ); + } + + // Reset defaultChecked for any radios and checkboxes + // about to be appended to the DOM in IE 6/7 (#8060) + if ( !support.appendChecked ) { + jQuery.grep( getAll( nodes, "input" ), fixDefaultChecked ); + } + + i = 0; + while ( (elem = nodes[ i++ ]) ) { + + // #4087 - If origin and destination elements are the same, and this is + // that element, do not do anything + if ( selection && jQuery.inArray( elem, selection ) !== -1 ) { + continue; + } + + contains = jQuery.contains( elem.ownerDocument, elem ); + + // Append to fragment + tmp = getAll( safe.appendChild( elem ), "script" ); + + // Preserve script evaluation history + if ( contains ) { + setGlobalEval( tmp ); + } + + // Capture executables + if ( scripts ) { + j = 0; + while ( (elem = tmp[ j++ ]) ) { + if ( rscriptType.test( elem.type || "" ) ) { + scripts.push( elem ); + } + } + } + } + + tmp = null; + + return safe; + }, + + cleanData: function( elems, /* internal */ acceptData ) { + var elem, type, id, data, + i = 0, + internalKey = jQuery.expando, + cache = jQuery.cache, + deleteExpando = support.deleteExpando, + special = jQuery.event.special; + + for ( ; (elem = elems[i]) != null; i++ ) { + if ( acceptData || jQuery.acceptData( elem ) ) { + + id = elem[ internalKey ]; + data = id && cache[ id ]; + + if ( data ) { + if ( data.events ) { + for ( type in data.events ) { + if ( special[ type ] ) { + jQuery.event.remove( elem, type ); + + // This is a shortcut to avoid jQuery.event.remove's overhead + } else { + jQuery.removeEvent( elem, type, data.handle ); + } + } + } + + // Remove cache only if it was not already removed by jQuery.event.remove + if ( cache[ id ] ) { + + delete cache[ id ]; + + // IE does not allow us to delete expando properties from nodes, + // nor does it have a removeAttribute function on Document nodes; + // we must handle all of these cases + if ( deleteExpando ) { + delete elem[ internalKey ]; + + } else if ( typeof elem.removeAttribute !== strundefined ) { + elem.removeAttribute( internalKey ); + + } else { + elem[ internalKey ] = null; + } + + deletedIds.push( id ); + } + } + } + } + } +}); + +jQuery.fn.extend({ + text: function( value ) { + return access( this, function( value ) { + return value === undefined ? + jQuery.text( this ) : + this.empty().append( ( this[0] && this[0].ownerDocument || document ).createTextNode( value ) ); + }, null, value, arguments.length ); + }, + + append: function() { + return this.domManip( arguments, function( elem ) { + if ( this.nodeType === 1 || this.nodeType === 11 || this.nodeType === 9 ) { + var target = manipulationTarget( this, elem ); + target.appendChild( elem ); + } + }); + }, + + prepend: function() { + return this.domManip( arguments, function( elem ) { + if ( this.nodeType === 1 || this.nodeType === 11 || this.nodeType === 9 ) { + var target = manipulationTarget( this, elem ); + target.insertBefore( elem, target.firstChild ); + } + }); + }, + + before: function() { + return this.domManip( arguments, function( elem ) { + if ( this.parentNode ) { + this.parentNode.insertBefore( elem, this ); + } + }); + }, + + after: function() { + return this.domManip( arguments, function( elem ) { + if ( this.parentNode ) { + this.parentNode.insertBefore( elem, this.nextSibling ); + } + }); + }, + + remove: function( selector, keepData /* Internal Use Only */ ) { + var elem, + elems = selector ? jQuery.filter( selector, this ) : this, + i = 0; + + for ( ; (elem = elems[i]) != null; i++ ) { + + if ( !keepData && elem.nodeType === 1 ) { + jQuery.cleanData( getAll( elem ) ); + } + + if ( elem.parentNode ) { + if ( keepData && jQuery.contains( elem.ownerDocument, elem ) ) { + setGlobalEval( getAll( elem, "script" ) ); + } + elem.parentNode.removeChild( elem ); + } + } + + return this; + }, + + empty: function() { + var elem, + i = 0; + + for ( ; (elem = this[i]) != null; i++ ) { + // Remove element nodes and prevent memory leaks + if ( elem.nodeType === 1 ) { + jQuery.cleanData( getAll( elem, false ) ); + } + + // Remove any remaining nodes + while ( elem.firstChild ) { + elem.removeChild( elem.firstChild ); + } + + // If this is a select, ensure that it displays empty (#12336) + // Support: IE<9 + if ( elem.options && jQuery.nodeName( elem, "select" ) ) { + elem.options.length = 0; + } + } + + return this; + }, + + clone: function( dataAndEvents, deepDataAndEvents ) { + dataAndEvents = dataAndEvents == null ? false : dataAndEvents; + deepDataAndEvents = deepDataAndEvents == null ? dataAndEvents : deepDataAndEvents; + + return this.map(function() { + return jQuery.clone( this, dataAndEvents, deepDataAndEvents ); + }); + }, + + html: function( value ) { + return access( this, function( value ) { + var elem = this[ 0 ] || {}, + i = 0, + l = this.length; + + if ( value === undefined ) { + return elem.nodeType === 1 ? + elem.innerHTML.replace( rinlinejQuery, "" ) : + undefined; + } + + // See if we can take a shortcut and just use innerHTML + if ( typeof value === "string" && !rnoInnerhtml.test( value ) && + ( support.htmlSerialize || !rnoshimcache.test( value ) ) && + ( support.leadingWhitespace || !rleadingWhitespace.test( value ) ) && + !wrapMap[ (rtagName.exec( value ) || [ "", "" ])[ 1 ].toLowerCase() ] ) { + + value = value.replace( rxhtmlTag, "<$1>" ); + + try { + for (; i < l; i++ ) { + // Remove element nodes and prevent memory leaks + elem = this[i] || {}; + if ( elem.nodeType === 1 ) { + jQuery.cleanData( getAll( elem, false ) ); + elem.innerHTML = value; + } + } + + elem = 0; + + // If using innerHTML throws an exception, use the fallback method + } catch(e) {} + } + + if ( elem ) { + this.empty().append( value ); + } + }, null, value, arguments.length ); + }, + + replaceWith: function() { + var arg = arguments[ 0 ]; + + // Make the changes, replacing each context element with the new content + this.domManip( arguments, function( elem ) { + arg = this.parentNode; + + jQuery.cleanData( getAll( this ) ); + + if ( arg ) { + arg.replaceChild( elem, this ); + } + }); + + // Force removal if there was no new content (e.g., from empty arguments) + return arg && (arg.length || arg.nodeType) ? this : this.remove(); + }, + + detach: function( selector ) { + return this.remove( selector, true ); + }, + + domManip: function( args, callback ) { + + // Flatten any nested arrays + args = concat.apply( [], args ); + + var first, node, hasScripts, + scripts, doc, fragment, + i = 0, + l = this.length, + set = this, + iNoClone = l - 1, + value = args[0], + isFunction = jQuery.isFunction( value ); + + // We can't cloneNode fragments that contain checked, in WebKit + if ( isFunction || + ( l > 1 && typeof value === "string" && + !support.checkClone && rchecked.test( value ) ) ) { + return this.each(function( index ) { + var self = set.eq( index ); + if ( isFunction ) { + args[0] = value.call( this, index, self.html() ); + } + self.domManip( args, callback ); + }); + } + + if ( l ) { + fragment = jQuery.buildFragment( args, this[ 0 ].ownerDocument, false, this ); + first = fragment.firstChild; + + if ( fragment.childNodes.length === 1 ) { + fragment = first; + } + + if ( first ) { + scripts = jQuery.map( getAll( fragment, "script" ), disableScript ); + hasScripts = scripts.length; + + // Use the original fragment for the last item instead of the first because it can end up + // being emptied incorrectly in certain situations (#8070). + for ( ; i < l; i++ ) { + node = fragment; + + if ( i !== iNoClone ) { + node = jQuery.clone( node, true, true ); + + // Keep references to cloned scripts for later restoration + if ( hasScripts ) { + jQuery.merge( scripts, getAll( node, "script" ) ); + } + } + + callback.call( this[i], node, i ); + } + + if ( hasScripts ) { + doc = scripts[ scripts.length - 1 ].ownerDocument; + + // Reenable scripts + jQuery.map( scripts, restoreScript ); + + // Evaluate executable scripts on first document insertion + for ( i = 0; i < hasScripts; i++ ) { + node = scripts[ i ]; + if ( rscriptType.test( node.type || "" ) && + !jQuery._data( node, "globalEval" ) && jQuery.contains( doc, node ) ) { + + if ( node.src ) { + // Optional AJAX dependency, but won't run scripts if not present + if ( jQuery._evalUrl ) { + jQuery._evalUrl( node.src ); + } + } else { + jQuery.globalEval( ( node.text || node.textContent || node.innerHTML || "" ).replace( rcleanScript, "" ) ); + } + } + } + } + + // Fix #11809: Avoid leaking memory + fragment = first = null; + } + } + + return this; + } +}); + +jQuery.each({ + appendTo: "append", + prependTo: "prepend", + insertBefore: "before", + insertAfter: "after", + replaceAll: "replaceWith" +}, function( name, original ) { + jQuery.fn[ name ] = function( selector ) { + var elems, + i = 0, + ret = [], + insert = jQuery( selector ), + last = insert.length - 1; + + for ( ; i <= last; i++ ) { + elems = i === last ? this : this.clone(true); + jQuery( insert[i] )[ original ]( elems ); + + // Modern browsers can apply jQuery collections as arrays, but oldIE needs a .get() + push.apply( ret, elems.get() ); + } + + return this.pushStack( ret ); + }; +}); + + +var iframe, + elemdisplay = {}; + +/** + * Retrieve the actual display of a element + * @param {String} name nodeName of the element + * @param {Object} doc Document object + */ +// Called only from within defaultDisplay +function actualDisplay( name, doc ) { + var style, + elem = jQuery( doc.createElement( name ) ).appendTo( doc.body ), + + // getDefaultComputedStyle might be reliably used only on attached element + display = window.getDefaultComputedStyle && ( style = window.getDefaultComputedStyle( elem[ 0 ] ) ) ? + + // Use of this method is a temporary fix (more like optmization) until something better comes along, + // since it was removed from specification and supported only in FF + style.display : jQuery.css( elem[ 0 ], "display" ); + + // We don't have any data stored on the element, + // so use "detach" method as fast way to get rid of the element + elem.detach(); + + return display; +} + +/** + * Try to determine the default display value of an element + * @param {String} nodeName + */ +function defaultDisplay( nodeName ) { + var doc = document, + display = elemdisplay[ nodeName ]; + + if ( !display ) { + display = actualDisplay( nodeName, doc ); + + // If the simple way fails, read from inside an iframe + if ( display === "none" || !display ) { + + // Use the already-created iframe if possible + iframe = (iframe || jQuery( "