-
Notifications
You must be signed in to change notification settings - Fork 1.3k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #1243 from streamjoin/script-hematologic-disease-p…
…rediction Adding the training script for the hematologic disease prediction
- Loading branch information
Showing
1 changed file
with
211 additions
and
0 deletions.
There are no files selected for viewing
211 changes: 211 additions & 0 deletions
211
examples/healthcare/application/Hematologic_Disease/train_cnn.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,211 @@ | ||
# | ||
# Licensed to the Apache Software Foundation (ASF) under one | ||
# or more contributor license agreements. See the NOTICE file | ||
# distributed with this work for additional information | ||
# regarding copyright ownership. The ASF licenses this file | ||
# to you under the Apache License, Version 2.0 (the | ||
# "License"); you may not use this file except in compliance | ||
# with the License. You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, | ||
# software distributed under the License is distributed on an | ||
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | ||
# KIND, either express or implied. See the License for the | ||
# specific language governing permissions and limitations | ||
# under the License. | ||
# | ||
|
||
import time | ||
from singa import singa_wrap as singa | ||
from singa import device | ||
from singa import tensor | ||
from singa import opt | ||
import numpy as np | ||
from tqdm import tqdm | ||
import argparse | ||
import sys | ||
sys.path.append("../../..") | ||
|
||
from healthcare.data import bloodmnist | ||
from healthcare.models import hematologic_net | ||
|
||
np_dtype = {"float16": np.float16, "float32": np.float32} | ||
singa_dtype = {"float16": tensor.float16, "float32": tensor.float32} | ||
|
||
|
||
def accuracy(pred, target): | ||
"""Compute recall accuracy. | ||
Args: | ||
pred (Numpy ndarray): Prediction array, should be in shape (B, C) | ||
target (Numpy ndarray): Ground truth array, should be in shape (B, ) | ||
Return: | ||
correct (Float): Recall accuracy | ||
""" | ||
# y is network output to be compared with ground truth (int) | ||
y = np.argmax(pred, axis=1) | ||
a = (y[:,None]==target).sum() | ||
correct = np.array(a, "int").sum() | ||
return correct | ||
|
||
def run(dir_path, | ||
max_epoch, | ||
batch_size, | ||
model, | ||
data, | ||
lr, | ||
graph, | ||
verbosity, | ||
dist_option='plain', | ||
spars=None, | ||
precision='float32'): | ||
# Start training | ||
dev = device.create_cpu_device() | ||
dev.SetRandSeed(0) | ||
np.random.seed(0) | ||
if data == 'bloodmnist': | ||
train_dataset, val_dataset, num_class = bloodmnist.load(dir_path=dir_path) | ||
else: | ||
print( | ||
'Wrong dataset!' | ||
) | ||
sys.exit(0) | ||
|
||
if model == 'cnn': | ||
model = hematologic_net.create_model(num_classes=num_class) | ||
else: | ||
print( | ||
'Wrong model!' | ||
) | ||
sys.exit(0) | ||
|
||
# Model configuration for CNN | ||
# criterion = layer.SoftMaxCrossEntropy() | ||
optimizer_ft = opt.Adam(lr) | ||
|
||
tx = tensor.Tensor( | ||
(batch_size, 3, model.input_size, model.input_size), dev, | ||
singa_dtype[precision]) | ||
ty = tensor.Tensor((batch_size,), dev, tensor.int32) | ||
|
||
num_train_batch = train_dataset.__len__() // batch_size | ||
num_val_batch = val_dataset.__len__() // batch_size | ||
idx = np.arange(train_dataset.__len__(), dtype=np.int32) | ||
|
||
# Attach model to graph | ||
model.set_optimizer(optimizer_ft) | ||
model.compile([tx], is_train=True, use_graph=graph, sequential=False) | ||
dev.SetVerbosity(verbosity) | ||
|
||
# Training and evaluation loop | ||
for epoch in range(max_epoch): | ||
print(f'Epoch {epoch}:') | ||
|
||
start_time = time.time() | ||
|
||
train_correct = np.zeros(shape=[1], dtype=np.float32) | ||
test_correct = np.zeros(shape=[1], dtype=np.float32) | ||
train_loss = np.zeros(shape=[1], dtype=np.float32) | ||
|
||
# Training part | ||
model.train() | ||
for b in tqdm(range(num_train_batch)): | ||
# Extract batch from image list | ||
x, y = train_dataset.batchgenerator(idx[b * batch_size:(b + 1) * batch_size], | ||
batch_size=batch_size, data_size=(3, model.input_size, model.input_size)) | ||
x = x.astype(np_dtype[precision]) | ||
|
||
tx.copy_from_numpy(x) | ||
ty.copy_from_numpy(y) | ||
|
||
out, loss = model(tx, ty, dist_option, spars) | ||
train_correct += accuracy(tensor.to_numpy(out), y) | ||
train_loss += tensor.to_numpy(loss)[0] | ||
print('Training loss = %f, training accuracy = %f' % | ||
(train_loss, train_correct / | ||
(num_train_batch * batch_size))) | ||
|
||
# Validation part | ||
model.eval() | ||
for b in tqdm(range(num_val_batch)): | ||
x, y = train_dataset.batchgenerator(idx[b * batch_size:(b + 1) * batch_size], | ||
batch_size=batch_size, data_size=(3, model.input_size, model.input_size)) | ||
x = x.astype(np_dtype[precision]) | ||
|
||
tx.copy_from_numpy(x) | ||
ty.copy_from_numpy(y) | ||
|
||
out = model(tx) | ||
test_correct += accuracy(tensor.to_numpy(out), y) | ||
|
||
print('Evaluation accuracy = %f, Elapsed Time = %fs' % | ||
(test_correct / (num_val_batch * batch_size), | ||
time.time() - start_time)) | ||
|
||
|
||
if __name__ == '__main__': | ||
# Use argparse to get command config: max_epoch, model, data, etc., for single gpu training | ||
parser = argparse.ArgumentParser( | ||
description='Training using the autograd and graph.') | ||
parser.add_argument( | ||
'model', | ||
choices=['cnn'], | ||
default='cnn') | ||
parser.add_argument('data', | ||
choices=['bloodmnist'], | ||
default='bloodmnist') | ||
parser.add_argument('-p', | ||
choices=['float32', 'float16'], | ||
default='float32', | ||
dest='precision') | ||
parser.add_argument('-dir', | ||
'--dir-path', | ||
default="/tmp/bloodmnist", | ||
type=str, | ||
help='the directory to store the bloodmnist dataset', | ||
dest='dir_path') | ||
parser.add_argument('-m', | ||
'--max-epoch', | ||
default=100, | ||
type=int, | ||
help='maximum epochs', | ||
dest='max_epoch') | ||
parser.add_argument('-b', | ||
'--batch-size', | ||
default=256, | ||
type=int, | ||
help='batch size', | ||
dest='batch_size') | ||
parser.add_argument('-l', | ||
'--learning-rate', | ||
default=0.003, | ||
type=float, | ||
help='initial learning rate', | ||
dest='lr') | ||
parser.add_argument('-g', | ||
'--disable-graph', | ||
default='True', | ||
action='store_false', | ||
help='disable graph', | ||
dest='graph') | ||
parser.add_argument('-v', | ||
'--log-verbosity', | ||
default=0, | ||
type=int, | ||
help='logging verbosity', | ||
dest='verbosity') | ||
|
||
args = parser.parse_args() | ||
|
||
run(args.dir_path, | ||
args.max_epoch, | ||
args.batch_size, | ||
args.model, | ||
args.data, | ||
args.lr, | ||
args.graph, | ||
args.verbosity, | ||
precision=args.precision) |