Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add implementation for model and data processing for the hfl example #1126

Merged
merged 1 commit into from
Jan 6, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
78 changes: 78 additions & 0 deletions examples/hfl/bank.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,78 @@
# https://github.com/zhengzangw/Fed-SINGA/blob/main/src/client/data/bank.py

import pandas as pd
import numpy as np
import sys
from pandas.api.types import is_numeric_dtype
from sklearn.model_selection import train_test_split
from sklearn.utils import shuffle


def encode(df):
res = pd.DataFrame()
for col in df.columns.values:
if not is_numeric_dtype(df[col]):
tmp = pd.get_dummies(df[col], prefix=col)
else:
tmp = df[col]
res = pd.concat([res, tmp], axis=1)
return res


def load(device_id):
fn_train = "data/bank_train_" + str(device_id) + ".csv"
fn_test = "data/bank_test_" + str(device_id) + ".csv"

train = pd.read_csv(fn_train, sep=',')
test = pd.read_csv(fn_test, sep=',')

train_x = train.drop(['y'], axis=1)
train_y = train['y']
val_x = test.drop(['y'], axis=1)
val_y = test['y']

train_x = np.array((train_x), dtype=np.float32)
val_x = np.array((val_x), dtype=np.float32)
train_y = np.array((train_y), dtype=np.int32)
val_y = np.array((val_y), dtype=np.int32)

train_x, val_x = normalize(train_x, val_x)
num_classes = 2

return train_x, train_y, val_x, val_y, num_classes


def normalize(X_train, X_test):
from sklearn.preprocessing import MinMaxScaler
scaler = MinMaxScaler()
X_train_scaled = scaler.fit_transform(X_train)
X_test_scaled = scaler.transform(X_test)
return X_train_scaled, X_test_scaled


def split(num):
filepath = "../data/bank-additional-full.csv"
df = pd.read_csv(filepath, sep=';')
df['y'] = (df['y'] == 'yes').astype(int)
data = encode(df)
data = shuffle(data)
train, test = train_test_split(data, test_size=0.2)

train.to_csv("data/bank_train_.csv", index=False)
test.to_csv("data/bank_test_.csv", index=False)

train_per_client = len(train) // num
test_per_client = len(test) // num

print("train_per_client:", train_per_client)
print("test_per_client:", test_per_client)
for i in range(num):
sub_train = train[i * train_per_client:(i + 1) * train_per_client]
sub_test = test[i * test_per_client:(i + 1) * test_per_client]
sub_train.to_csv("data/bank_train_" + str(i) + ".csv", index=False)
sub_test.to_csv("data/bank_test_" + str(i) + ".csv", index=False)


if __name__ == "__main__":
split(int(sys.argv[1]))

134 changes: 134 additions & 0 deletions examples/hfl/mlp.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,134 @@
#
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
#

import argparse

import numpy as np
from singa import device, layer, model, opt, tensor

np_dtype = {"float16": np.float16, "float32": np.float32}

singa_dtype = {"float16": tensor.float16, "float32": tensor.float32}


class MLP(model.Model):
def __init__(self, data_size=10, perceptron_size=100, num_classes=10):
super(MLP, self).__init__()
self.num_classes = num_classes
self.dimension = 2

self.relu = layer.ReLU()
self.linear1 = layer.Linear(perceptron_size)
self.linear2 = layer.Linear(num_classes)
self.softmax_cross_entropy = layer.SoftMaxCrossEntropy()

def forward(self, inputs):
y = self.linear1(inputs)
y = self.relu(y)
y = self.linear2(y)
return y

def train_one_batch(self, x, y, dist_option, spars):
out = self.forward(x)
loss = self.softmax_cross_entropy(out, y)

if dist_option == "plain":
self.optimizer(loss)
elif dist_option == "half":
self.optimizer.backward_and_update_half(loss)
elif dist_option == "partialUpdate":
self.optimizer.backward_and_partial_update(loss)
elif dist_option == "sparseTopK":
self.optimizer.backward_and_sparse_update(loss, topK=True, spars=spars)
elif dist_option == "sparseThreshold":
self.optimizer.backward_and_sparse_update(loss, topK=False, spars=spars)
return out, loss

def set_optimizer(self, optimizer):
self.optimizer = optimizer


def create_model(pretrained=False, **kwargs):
"""Constructs a CNN model.
Args:
pretrained (bool): If True, returns a pre-trained model.

Returns:
The created CNN model.
"""
model = MLP(**kwargs)

return model


__all__ = ["MLP", "create_model"]

if __name__ == "__main__":
np.random.seed(0)

parser = argparse.ArgumentParser()
parser.add_argument("-p", choices=["float32", "float16"], default="float32", dest="precision")
parser.add_argument(
"-g",
"--disable-graph",
default="True",
action="store_false",
help="disable graph",
dest="graph",
)
parser.add_argument(
"-m", "--max-epoch", default=1001, type=int, help="maximum epochs", dest="max_epoch"
)
args = parser.parse_args()

# generate the boundary
f = lambda x: (5 * x + 1)
bd_x = np.linspace(-1.0, 1, 200)
bd_y = f(bd_x)

# generate the training data
x = np.random.uniform(-1, 1, 400)
y = f(x) + 2 * np.random.randn(len(x))

# choose one precision
precision = singa_dtype[args.precision]
np_precision = np_dtype[args.precision]

# convert training data to 2d space
label = np.asarray([5 * a + 1 > b for (a, b) in zip(x, y)]).astype(np.int32)
data = np.array([[a, b] for (a, b) in zip(x, y)], dtype=np_precision)

dev = device.create_cuda_gpu_on(0)
sgd = opt.SGD(0.1, 0.9, 1e-5, dtype=singa_dtype[args.precision])
tx = tensor.Tensor((400, 2), dev, precision)
ty = tensor.Tensor((400,), dev, tensor.int32)
model = MLP(data_size=2, perceptron_size=3, num_classes=2)

# attach model to graph
model.set_optimizer(sgd)
model.compile([tx], is_train=True, use_graph=args.graph, sequential=True)
model.train()

for i in range(args.max_epoch):
tx.copy_from_numpy(data)
ty.copy_from_numpy(label)
out, loss = model(tx, ty, "fp32", spars=None)

if i % 100 == 0:
print("training loss = ", tensor.to_numpy(loss)[0])
Loading