Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Adding the training script for the hematologic disease prediction #1243

Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
211 changes: 211 additions & 0 deletions examples/healthcare/application/Hematologic_Disease/train_cnn.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,211 @@
#
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
#

import time
from singa import singa_wrap as singa
from singa import device
from singa import tensor
from singa import opt
import numpy as np
from tqdm import tqdm
import argparse
import sys
sys.path.append("../../..")

from healthcare.data import bloodmnist
from healthcare.models import hematologic_net

np_dtype = {"float16": np.float16, "float32": np.float32}
singa_dtype = {"float16": tensor.float16, "float32": tensor.float32}


def accuracy(pred, target):
"""Compute recall accuracy.

Args:
pred (Numpy ndarray): Prediction array, should be in shape (B, C)
target (Numpy ndarray): Ground truth array, should be in shape (B, )

Return:
correct (Float): Recall accuracy
"""
# y is network output to be compared with ground truth (int)
y = np.argmax(pred, axis=1)
a = (y[:,None]==target).sum()
correct = np.array(a, "int").sum()
return correct

def run(dir_path,
max_epoch,
batch_size,
model,
data,
lr,
graph,
verbosity,
dist_option='plain',
spars=None,
precision='float32'):
# Start training
dev = device.create_cpu_device()
dev.SetRandSeed(0)
np.random.seed(0)
if data == 'bloodmnist':
train_dataset, val_dataset, num_class = bloodmnist.load(dir_path=dir_path)
else:
print(
'Wrong dataset!'
)
sys.exit(0)

if model == 'cnn':
model = hematologic_net.create_model(num_classes=num_class)
else:
print(
'Wrong model!'
)
sys.exit(0)

# Model configuration for CNN
# criterion = layer.SoftMaxCrossEntropy()
optimizer_ft = opt.Adam(lr)

tx = tensor.Tensor(
(batch_size, 3, model.input_size, model.input_size), dev,
singa_dtype[precision])
ty = tensor.Tensor((batch_size,), dev, tensor.int32)

num_train_batch = train_dataset.__len__() // batch_size
num_val_batch = val_dataset.__len__() // batch_size
idx = np.arange(train_dataset.__len__(), dtype=np.int32)

# Attach model to graph
model.set_optimizer(optimizer_ft)
model.compile([tx], is_train=True, use_graph=graph, sequential=False)
dev.SetVerbosity(verbosity)

# Training and evaluation loop
for epoch in range(max_epoch):
print(f'Epoch {epoch}:')

start_time = time.time()

train_correct = np.zeros(shape=[1], dtype=np.float32)
test_correct = np.zeros(shape=[1], dtype=np.float32)
train_loss = np.zeros(shape=[1], dtype=np.float32)

# Training part
model.train()
for b in tqdm(range(num_train_batch)):
# Extract batch from image list
x, y = train_dataset.batchgenerator(idx[b * batch_size:(b + 1) * batch_size],
batch_size=batch_size, data_size=(3, model.input_size, model.input_size))
x = x.astype(np_dtype[precision])

tx.copy_from_numpy(x)
ty.copy_from_numpy(y)

out, loss = model(tx, ty, dist_option, spars)
train_correct += accuracy(tensor.to_numpy(out), y)
train_loss += tensor.to_numpy(loss)[0]
print('Training loss = %f, training accuracy = %f' %
(train_loss, train_correct /
(num_train_batch * batch_size)))

# Validation part
model.eval()
for b in tqdm(range(num_val_batch)):
x, y = train_dataset.batchgenerator(idx[b * batch_size:(b + 1) * batch_size],
batch_size=batch_size, data_size=(3, model.input_size, model.input_size))
x = x.astype(np_dtype[precision])

tx.copy_from_numpy(x)
ty.copy_from_numpy(y)

out = model(tx)
test_correct += accuracy(tensor.to_numpy(out), y)

print('Evaluation accuracy = %f, Elapsed Time = %fs' %
(test_correct / (num_val_batch * batch_size),
time.time() - start_time))


if __name__ == '__main__':
# Use argparse to get command config: max_epoch, model, data, etc., for single gpu training
parser = argparse.ArgumentParser(
description='Training using the autograd and graph.')
parser.add_argument(
'model',
choices=['cnn'],
default='cnn')
parser.add_argument('data',
choices=['bloodmnist'],
default='bloodmnist')
parser.add_argument('-p',
choices=['float32', 'float16'],
default='float32',
dest='precision')
parser.add_argument('-dir',
'--dir-path',
default="/tmp/bloodmnist",
type=str,
help='the directory to store the bloodmnist dataset',
dest='dir_path')
parser.add_argument('-m',
'--max-epoch',
default=100,
type=int,
help='maximum epochs',
dest='max_epoch')
parser.add_argument('-b',
'--batch-size',
default=256,
type=int,
help='batch size',
dest='batch_size')
parser.add_argument('-l',
'--learning-rate',
default=0.003,
type=float,
help='initial learning rate',
dest='lr')
parser.add_argument('-g',
'--disable-graph',
default='True',
action='store_false',
help='disable graph',
dest='graph')
parser.add_argument('-v',
'--log-verbosity',
default=0,
type=int,
help='logging verbosity',
dest='verbosity')

args = parser.parse_args()

run(args.dir_path,
args.max_epoch,
args.batch_size,
args.model,
args.data,
args.lr,
args.graph,
args.verbosity,
precision=args.precision)
Loading