Skip to content

Commit

Permalink
Run JuliaFormatter on more files, remove trailing whitespace (TuringL…
Browse files Browse the repository at this point in the history
…ang#2374)

Co-authored-by: Penelope Yong <[email protected]>
  • Loading branch information
mhauru and penelopeysm authored Oct 25, 2024
1 parent 08331c5 commit 269081e
Show file tree
Hide file tree
Showing 5 changed files with 58 additions and 61 deletions.
3 changes: 0 additions & 3 deletions .JuliaFormatter.toml
Original file line number Diff line number Diff line change
Expand Up @@ -8,7 +8,4 @@ ignore = [
# https://github.com/TuringLang/Turing.jl/pull/2328/files
"src/experimental/gibbs.jl",
"test/experimental/gibbs.jl",
# https://github.com/TuringLang/Turing.jl/pull/1887 # Enzyme PR
"test/mcmc/hmc.jl",
"test/mcmc/sghmc.jl",
]
6 changes: 3 additions & 3 deletions .github/workflows/DocsNav.yml
Original file line number Diff line number Diff line change
Expand Up @@ -32,13 +32,13 @@ jobs:
# Define the URL of the navbar to be used
NAVBAR_URL="https://raw.githubusercontent.com/TuringLang/turinglang.github.io/main/assets/scripts/TuringNavbar.html"
# Update all HTML files in the current directory (gh-pages root)
./insert_navbar.sh . $NAVBAR_URL
# Remove the insert_navbar.sh file
rm insert_navbar.sh
# Check if there are any changes
if [[ -n $(git status -s) ]]; then
git add .
Expand Down
2 changes: 1 addition & 1 deletion src/mcmc/mh.jl
Original file line number Diff line number Diff line change
Expand Up @@ -54,7 +54,7 @@ Specifying a single distribution implies the use of static MH:
```julia
# Use a static proposal for s² (which happens to be the same
# as the prior) and a static proposal for m (note that this
# as the prior) and a static proposal for m (note that this
# isn't a random walk proposal).
chain = sample(
gdemo(1.5, 2.0),
Expand Down
98 changes: 49 additions & 49 deletions test/mcmc/hmc.jl
Original file line number Diff line number Diff line change
Expand Up @@ -22,60 +22,59 @@ using Turing
# Set a seed
rng = StableRNG(123)
@testset "constrained bounded" begin
obs = [0,1,0,1,1,1,1,1,1,1]
obs = [0, 1, 0, 1, 1, 1, 1, 1, 1, 1]

@model function constrained_test(obs)
p ~ Beta(2,2)
for i = 1:length(obs)
p ~ Beta(2, 2)
for i in 1:length(obs)
obs[i] ~ Bernoulli(p)
end
p
return p
end

chain = sample(
rng,
constrained_test(obs),
HMC(1.5, 3; adtype=adbackend),# using a large step size (1.5)
1000)
1000,
)

check_numerical(chain, [:p], [10/14], atol=0.1)
check_numerical(chain, [:p], [10 / 14]; atol=0.1)
end
@testset "constrained simplex" begin
obs12 = [1,2,1,2,2,2,2,2,2,2]
obs12 = [1, 2, 1, 2, 2, 2, 2, 2, 2, 2]

@model function constrained_simplex_test(obs12)
ps ~ Dirichlet(2, 3)
pd ~ Dirichlet(4, 1)
for i = 1:length(obs12)
for i in 1:length(obs12)
obs12[i] ~ Categorical(ps)
end
return ps
end

chain = sample(
rng,
constrained_simplex_test(obs12),
HMC(0.75, 2; adtype=adbackend),
1000)
rng, constrained_simplex_test(obs12), HMC(0.75, 2; adtype=adbackend), 1000
)

check_numerical(chain, ["ps[1]", "ps[2]"], [5/16, 11/16], atol=0.015)
check_numerical(chain, ["ps[1]", "ps[2]"], [5 / 16, 11 / 16]; atol=0.015)
end
@testset "hmc reverse diff" begin
alg = HMC(0.1, 10; adtype=adbackend)
res = sample(rng, gdemo_default, alg, 4000)
check_gdemo(res, rtol=0.1)
check_gdemo(res; rtol=0.1)
end
@testset "matrix support" begin
@model function hmcmatrixsup()
v ~ Wishart(7, [1 0.5; 0.5 1])
return v ~ Wishart(7, [1 0.5; 0.5 1])
end

model_f = hmcmatrixsup()
n_samples = 1_000
vs = map(1:3) do _
chain = sample(rng, model_f, HMC(0.15, 7; adtype=adbackend), n_samples)
r = reshape(Array(group(chain, :v)), n_samples, 2, 2)
reshape(mean(r; dims = 1), 2, 2)
reshape(mean(r; dims=1), 2, 2)
end

@test maximum(abs, mean(vs) - (7 * [1 0.5; 0.5 1])) <= 0.5
Expand All @@ -92,10 +91,10 @@ using Turing
M = N ÷ 4
x1s = rand(M) * 5
x2s = rand(M) * 5
xt1s = Array([[x1s[i]; x2s[i]] for i = 1:M])
append!(xt1s, Array([[x1s[i] - 6; x2s[i] - 6] for i = 1:M]))
xt0s = Array([[x1s[i]; x2s[i] - 6] for i = 1:M])
append!(xt0s, Array([[x1s[i] - 6; x2s[i]] for i = 1:M]))
xt1s = Array([[x1s[i]; x2s[i]] for i in 1:M])
append!(xt1s, Array([[x1s[i] - 6; x2s[i] - 6] for i in 1:M]))
xt0s = Array([[x1s[i]; x2s[i] - 6] for i in 1:M])
append!(xt0s, Array([[x1s[i] - 6; x2s[i]] for i in 1:M]))

xs = [xt1s; xt0s]
ts = [ones(M); ones(M); zeros(M); zeros(M)]
Expand All @@ -106,20 +105,22 @@ using Turing
var_prior = sqrt(1.0 / alpha) # variance of the Gaussian prior

@model function bnn(ts)
b1 ~ MvNormal([0. ;0.; 0.],
[var_prior 0. 0.; 0. var_prior 0.; 0. 0. var_prior])
w11 ~ MvNormal([0.; 0.], [var_prior 0.; 0. var_prior])
w12 ~ MvNormal([0.; 0.], [var_prior 0.; 0. var_prior])
w13 ~ MvNormal([0.; 0.], [var_prior 0.; 0. var_prior])
b1 ~ MvNormal(
[0.0; 0.0; 0.0], [var_prior 0.0 0.0; 0.0 var_prior 0.0; 0.0 0.0 var_prior]
)
w11 ~ MvNormal([0.0; 0.0], [var_prior 0.0; 0.0 var_prior])
w12 ~ MvNormal([0.0; 0.0], [var_prior 0.0; 0.0 var_prior])
w13 ~ MvNormal([0.0; 0.0], [var_prior 0.0; 0.0 var_prior])
bo ~ Normal(0, var_prior)

wo ~ MvNormal([0.; 0; 0],
[var_prior 0. 0.; 0. var_prior 0.; 0. 0. var_prior])
for i = rand(1:N, 10)
wo ~ MvNormal(
[0.0; 0; 0], [var_prior 0.0 0.0; 0.0 var_prior 0.0; 0.0 0.0 var_prior]
)
for i in rand(1:N, 10)
y = nn(xs[i], b1, w11, w12, w13, bo, wo)
ts[i] ~ Bernoulli(y)
end
b1, w11, w12, w13, bo, wo
return b1, w11, w12, w13, bo, wo
end

# Sampling
Expand Down Expand Up @@ -147,7 +148,7 @@ using Turing
Random.seed!(12345) # particle samplers do not support user-provided `rng` yet
alg3 = Gibbs(PG(20, :s), HMCDA(500, 0.8, 0.25, :m; init_ϵ=0.05, adtype=adbackend))

res3 = sample(rng, gdemo_default, alg3, 3000, discard_initial=1000)
res3 = sample(rng, gdemo_default, alg3, 3000; discard_initial=1000)
check_gdemo(res3)
end

Expand Down Expand Up @@ -191,8 +192,8 @@ using Turing
@testset "check discard" begin
alg = NUTS(100, 0.8; adtype=adbackend)

c1 = sample(rng, gdemo_default, alg, 500, discard_adapt=true)
c2 = sample(rng, gdemo_default, alg, 500, discard_adapt=false)
c1 = sample(rng, gdemo_default, alg, 500; discard_adapt=true)
c2 = sample(rng, gdemo_default, alg, 500; discard_adapt=false)

@test size(c1, 1) == 500
@test size(c2, 1) == 500
Expand All @@ -210,20 +211,20 @@ using Turing
# https://github.com/TuringLang/DynamicPPL.jl/issues/27
@model function mwe1(::Type{T}=Float64) where {T<:Real}
m = Matrix{T}(undef, 2, 3)
m .~ MvNormal(zeros(2), I)
return m .~ MvNormal(zeros(2), I)
end
@test sample(rng, mwe1(), HMC(0.2, 4; adtype=adbackend), 1_000) isa Chains

@model function mwe2(::Type{T}=Matrix{Float64}) where {T}
m = T(undef, 2, 3)
m .~ MvNormal(zeros(2), I)
return m .~ MvNormal(zeros(2), I)
end
@test sample(rng, mwe2(), HMC(0.2, 4; adtype=adbackend), 1_000) isa Chains

# https://github.com/TuringLang/Turing.jl/issues/1308
@model function mwe3(::Type{T}=Array{Float64}) where {T}
m = T(undef, 2, 3)
m .~ MvNormal(zeros(2), I)
return m .~ MvNormal(zeros(2), I)
end
@test sample(rng, mwe3(), HMC(0.2, 4; adtype=adbackend), 1_000) isa Chains
end
Expand All @@ -241,13 +242,17 @@ using Turing
@model function demo_hmc_prior()
# NOTE: Used to use `InverseGamma(2, 3)` but this has infinite variance
# which means that it's _very_ difficult to find a good tolerance in the test below:)
s ~ truncated(Normal(3, 1), lower=0)
m ~ Normal(0, sqrt(s))
s ~ truncated(Normal(3, 1); lower=0)
return m ~ Normal(0, sqrt(s))
end
alg = NUTS(1000, 0.8; adtype=adbackend)
gdemo_default_prior = DynamicPPL.contextualize(demo_hmc_prior(), DynamicPPL.PriorContext())
gdemo_default_prior = DynamicPPL.contextualize(
demo_hmc_prior(), DynamicPPL.PriorContext()
)
chain = sample(gdemo_default_prior, alg, 10_000; initial_params=[3.0, 0.0])
check_numerical(chain, [:s, :m], [mean(truncated(Normal(3, 1); lower=0)), 0], atol=0.2)
check_numerical(
chain, [:s, :m], [mean(truncated(Normal(3, 1); lower=0)), 0]; atol=0.2
)
end

@testset "warning for difficult init params" begin
Expand All @@ -262,7 +267,7 @@ using Turing
@test_logs (
:warn,
"failed to find valid initial parameters in 10 tries; consider providing explicit initial parameters using the `initial_params` keyword",
) (:info,) match_mode=:any begin
) (:info,) match_mode = :any begin
sample(demo_warn_initial_params(), NUTS(; adtype=adbackend), 5)
end
end
Expand All @@ -271,7 +276,7 @@ using Turing
@model function vector_of_dirichlet(::Type{TV}=Vector{Float64}) where {TV}
xs = Vector{TV}(undef, 2)
xs[1] ~ Dirichlet(ones(5))
xs[2] ~ Dirichlet(ones(5))
return xs[2] ~ Dirichlet(ones(5))
end
model = vector_of_dirichlet()
chain = sample(model, NUTS(), 1000)
Expand All @@ -296,15 +301,10 @@ using Turing
end
end

model = buggy_model();
num_samples = 1_000;
model = buggy_model()
num_samples = 1_000

chain = sample(
model,
NUTS(),
num_samples;
initial_params=[0.5, 1.75, 1.0]
)
chain = sample(model, NUTS(), num_samples; initial_params=[0.5, 1.75, 1.0])
chain_prior = sample(model, Prior(), num_samples)

# Extract the `x` like this because running `generated_quantities` was how
Expand Down
10 changes: 5 additions & 5 deletions test/mcmc/sghmc.jl
Original file line number Diff line number Diff line change
Expand Up @@ -34,7 +34,7 @@ using Turing

alg = SGHMC(; learning_rate=0.02, momentum_decay=0.5, adtype=adbackend)
chain = sample(rng, gdemo_default, alg, 10_000)
check_gdemo(chain, atol=0.1)
check_gdemo(chain; atol=0.1)
end
end

Expand All @@ -58,15 +58,15 @@ end
@testset "sgld inference" begin
rng = StableRNG(1)

chain = sample(rng, gdemo_default, SGLD(; stepsize = PolynomialStepsize(0.5)), 20_000)
check_gdemo(chain, atol = 0.2)
chain = sample(rng, gdemo_default, SGLD(; stepsize=PolynomialStepsize(0.5)), 20_000)
check_gdemo(chain; atol=0.2)

# Weight samples by step sizes (cf section 4.2 in the paper by Welling and Teh)
v = get(chain, [:SGLD_stepsize, :s, :m])
s_weighted = dot(v.SGLD_stepsize, v.s) / sum(v.SGLD_stepsize)
m_weighted = dot(v.SGLD_stepsize, v.m) / sum(v.SGLD_stepsize)
@test s_weighted 49/24 atol=0.2
@test m_weighted 7/6 atol=0.2
@test s_weighted 49 / 24 atol = 0.2
@test m_weighted 7 / 6 atol = 0.2
end
end

Expand Down

0 comments on commit 269081e

Please sign in to comment.