Skip to content

Latest commit

 

History

History
200 lines (137 loc) · 7.92 KB

README.md

File metadata and controls

200 lines (137 loc) · 7.92 KB

GPT-SoVITS-WebUI

A Powerful Few-shot Voice Conversion and Text-to-Speech WebUI.

madewithlove


Licence Huggingface

English | 中文简体 | 日本語


Check out our demo video here!

few.shot.fine.tuning.demo.mp4

For users in China region, you can use AutoDL Cloud Docker to experience the full functionality online: https://www.codewithgpu.com/i/RVC-Boss/GPT-SoVITS/GPT-SoVITS-Official

Features:

  1. Zero-shot TTS: Input a 5-second vocal sample and experience instant text-to-speech conversion.

  2. Few-shot TTS: Fine-tune the model with just 1 minute of training data for improved voice similarity and realism.

  3. Cross-lingual Support: Inference in languages different from the training dataset, currently supporting English, Japanese, and Chinese.

  4. WebUI Tools: Integrated tools include voice accompaniment separation, automatic training set segmentation, Chinese ASR, and text labeling, assisting beginners in creating training datasets and GPT/SoVITS models.

Environment Preparation

If you are a Windows user (tested with win>=10) you can install directly via the prezip. Just download the prezip, unzip it and double-click go-webui.bat to start GPT-SoVITS-WebUI.

Tested Environments

  • Python 3.9, PyTorch 2.0.1, CUDA 11
  • Python 3.10.13, PyTorch 2.1.2, CUDA 12.3
  • Python 3.9, PyTorch 2.3.0.dev20240122, macOS 14.3 (Apple Silicon, MPS)

Note: numba==0.56.4 require py<3.11

For Mac Users

If you are a Mac user, please install by using the following commands:

Create Environment

conda create -n GPTSoVits python=3.9
conda activate GPTSoVits

Install Requirements

pip install -r requirements.txt
pip uninstall torch torchaudio
pip3 install --pre torch torchaudio --index-url https://download.pytorch.org/whl/nightly/cpu

Note: For preprocessing with UVR5, it is recommended to download the original project GUI and select GPU for operation. Additionally, there may be memory leak issues when using Mac for inference, restarting the inference webUI can release the memory.

Quick Install with Conda

conda create -n GPTSoVits python=3.9
conda activate GPTSoVits
bash install.sh

Install Manually

Pip Packages

pip install -r requirements.txt

FFmpeg

Conda Users
conda install ffmpeg
Ubuntu/Debian Users
sudo apt install ffmpeg
sudo apt install libsox-dev
conda install -c conda-forge 'ffmpeg<7'
MacOS Users
brew install ffmpeg
Windows Users

Download and place ffmpeg.exe and ffprobe.exe in the GPT-SoVITS root.

Pretrained Models

Download pretrained models from GPT-SoVITS Models and place them in GPT_SoVITS/pretrained_models.

For Chinese ASR (additionally), download models from Damo ASR Model, Damo VAD Model, and Damo Punc Model and place them in tools/damo_asr/models.

For UVR5 (Vocals/Accompaniment Separation & Reverberation Removal, additionally), download models from UVR5 Weights and place them in tools/uvr5/uvr5_weights.

Using Docker

docker-compose.yaml configuration

  1. Environment Variables:
  • is_half: Controls half-precision/double-precision. This is typically the cause if the content under the directories 4-cnhubert/5-wav32k is not generated correctly during the "SSL extracting" step. Adjust to True or False based on your actual situation.
  1. Volumes Configuration,The application's root directory inside the container is set to /workspace. The default docker-compose.yaml lists some practical examples for uploading/downloading content.
  2. shm_size: The default available memory for Docker Desktop on Windows is too small, which can cause abnormal operations. Adjust according to your own situation.
  3. Under the deploy section, GPU-related settings should be adjusted cautiously according to your system and actual circumstances.

Running with docker compose

docker compose -f "docker-compose.yaml" up -d

Running with docker command

As above, modify the corresponding parameters based on your actual situation, then run the following command:

docker run --rm -it --gpus=all --env=is_half=False --volume=G:\GPT-SoVITS-DockerTest\output:/workspace/output --volume=G:\GPT-SoVITS-DockerTest\logs:/workspace/logs --volume=G:\GPT-SoVITS-DockerTest\SoVITS_weights:/workspace/SoVITS_weights --workdir=/workspace -p 9870:9870 -p 9871:9871 -p 9872:9872 -p 9873:9873 -p 9874:9874 --shm-size="16G" -d breakstring/gpt-sovits:dev-20240123.03

Dataset Format

The TTS annotation .list file format:

vocal_path|speaker_name|language|text

Language dictionary:

  • 'zh': Chinese
  • 'ja': Japanese
  • 'en': English

Example:

D:\GPT-SoVITS\xxx/xxx.wav|xxx|en|I like playing Genshin.

Todo List

  • High Priority:

    • Localization in Japanese and English.
    • User guide.
    • Japanese and English dataset fine tune training.
  • Features:

    • Zero-shot voice conversion (5s) / few-shot voice conversion (1min).
    • TTS speaking speed control.
    • Enhanced TTS emotion control.
    • Experiment with changing SoVITS token inputs to probability distribution of vocabs.
    • Improve English and Japanese text frontend.
    • Develop tiny and larger-sized TTS models.
    • Colab scripts.
    • Try expand training dataset (2k hours -> 10k hours).
    • better sovits base model (enhanced audio quality)
    • model mix

Credits

Special thanks to the following projects and contributors:

Thanks to all contributors for their efforts