Skip to content

Commit

Permalink
[Core] Introduce SPMD worker execution using Ray accelerated DAG (vll…
Browse files Browse the repository at this point in the history
…m-project#6032)

Signed-off-by: Rui Qiao <[email protected]>
Co-authored-by: Stephanie Wang <[email protected]>
Signed-off-by: Alvant <[email protected]>
  • Loading branch information
2 people authored and Alvant committed Oct 26, 2024
1 parent b576ac2 commit 0acdd85
Show file tree
Hide file tree
Showing 8 changed files with 218 additions and 121 deletions.
3 changes: 3 additions & 0 deletions .buildkite/test-pipeline.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -84,6 +84,8 @@ steps:
- VLLM_TEST_SAME_HOST=1 torchrun --nproc-per-node=4 distributed/test_same_node.py
- TEST_DIST_MODEL=facebook/opt-125m DISTRIBUTED_EXECUTOR_BACKEND=ray pytest -v -s distributed/test_basic_distributed_correctness.py
- TEST_DIST_MODEL=meta-llama/Llama-2-7b-hf DISTRIBUTED_EXECUTOR_BACKEND=ray pytest -v -s distributed/test_basic_distributed_correctness.py
- TEST_DIST_MODEL=facebook/opt-125m DISTRIBUTED_EXECUTOR_BACKEND=ray VLLM_USE_RAY_SPMD_WORKER=1 VLLM_USE_RAY_COMPILED_DAG=1 pytest -v -s distributed/test_basic_distributed_correctness.py
- TEST_DIST_MODEL=meta-llama/Llama-2-7b-hf DISTRIBUTED_EXECUTOR_BACKEND=ray VLLM_USE_RAY_SPMD_WORKER=1 VLLM_USE_RAY_COMPILED_DAG=1 pytest -v -s distributed/test_basic_distributed_correctness.py
- TEST_DIST_MODEL=facebook/opt-125m DISTRIBUTED_EXECUTOR_BACKEND=ray pytest -v -s distributed/test_chunked_prefill_distributed.py
- TEST_DIST_MODEL=meta-llama/Llama-2-7b-hf DISTRIBUTED_EXECUTOR_BACKEND=ray pytest -v -s distributed/test_chunked_prefill_distributed.py
- TEST_DIST_MODEL=llava-hf/llava-1.5-7b-hf DISTRIBUTED_EXECUTOR_BACKEND=ray pytest -v -s distributed/test_multimodal_broadcast.py
Expand All @@ -108,6 +110,7 @@ steps:
# We want to test that models which use 2 GPUs work with 4 GPUs, which is why we duplicate them here.
# See https://github.com/vllm-project/vllm/pull/5473#issuecomment-2166601837 for context.
- TEST_DIST_MODEL=facebook/opt-125m DISTRIBUTED_EXECUTOR_BACKEND=ray pytest -v -s distributed/test_basic_distributed_correctness.py
- TEST_DIST_MODEL=facebook/opt-125m DISTRIBUTED_EXECUTOR_BACKEND=ray VLLM_USE_RAY_SPMD_WORKER=1 VLLM_USE_RAY_COMPILED_DAG=1 pytest -v -s distributed/test_basic_distributed_correctness.py
- TEST_DIST_MODEL=facebook/opt-125m DISTRIBUTED_EXECUTOR_BACKEND=mp pytest -v -s distributed/test_basic_distributed_correctness.py
- pytest -v -s spec_decode/e2e/test_integration_dist_tp4.py

Expand Down
5 changes: 5 additions & 0 deletions vllm/engine/llm_engine.py
Original file line number Diff line number Diff line change
Expand Up @@ -6,6 +6,7 @@

from transformers import PreTrainedTokenizer

import vllm.envs as envs
from vllm.config import (CacheConfig, DecodingConfig, DeviceConfig, LoadConfig,
LoRAConfig, ModelConfig, MultiModalConfig,
ObservabilityConfig, ParallelConfig,
Expand Down Expand Up @@ -414,6 +415,9 @@ def from_engine_args(
elif distributed_executor_backend == "mp":
from vllm.executor.multiproc_gpu_executor import (
MultiprocessingGPUExecutor)
assert not envs.VLLM_USE_RAY_SPMD_WORKER, (
"multiprocessing distributed executor backend does not "
"support VLLM_USE_RAY_SPMD_WORKER=1")
executor_class = MultiprocessingGPUExecutor
else:
from vllm.executor.gpu_executor import GPUExecutor
Expand All @@ -426,6 +430,7 @@ def from_engine_args(
usage_context=usage_context,
stat_loggers=stat_loggers,
)

return engine

def __reduce__(self):
Expand Down
8 changes: 8 additions & 0 deletions vllm/envs.py
Original file line number Diff line number Diff line change
Expand Up @@ -34,6 +34,7 @@
VLLM_OPENVINO_ENABLE_QUANTIZED_WEIGHTS: bool = False
VLLM_XLA_CACHE_PATH: str = os.path.join(VLLM_CACHE_ROOT, "xla_cache")
VLLM_FUSED_MOE_CHUNK_SIZE: int = 64 * 1024
VLLM_USE_RAY_SPMD_WORKER: bool = False
VLLM_USE_RAY_COMPILED_DAG: bool = False
VLLM_WORKER_MULTIPROC_METHOD: str = "fork"
VLLM_ASSETS_CACHE: str = os.path.join(VLLM_CACHE_ROOT, "assets")
Expand Down Expand Up @@ -261,6 +262,13 @@ def get_default_config_root():
"VLLM_OPENVINO_ENABLE_QUANTIZED_WEIGHTS":
lambda: bool(os.getenv("VLLM_OPENVINO_ENABLE_QUANTIZED_WEIGHTS", False)),

# If the env var is set, then all workers will execute as separate
# processes from the engine, and we use the same mechanism to trigger
# execution on all workers.
# Run vLLM with VLLM_USE_RAY_SPMD_WORKER=1 to enable it.
"VLLM_USE_RAY_SPMD_WORKER":
lambda: bool(os.getenv("VLLM_USE_RAY_SPMD_WORKER", 0)),

# If the env var is set, it uses the Ray's compiled DAG API
# which optimizes the control plane overhead.
# Run vLLM with VLLM_USE_RAY_COMPILED_DAG=1 to enable it.
Expand Down
8 changes: 5 additions & 3 deletions vllm/executor/distributed_gpu_executor.py
Original file line number Diff line number Diff line change
Expand Up @@ -64,16 +64,18 @@ def initialize_cache(self, num_gpu_blocks: int,
num_cpu_blocks=num_cpu_blocks)

def execute_model(
self, execute_model_req: ExecuteModelRequest
) -> Optional[List[SamplerOutput]]:
self,
execute_model_req: ExecuteModelRequest) -> List[SamplerOutput]:
if self.parallel_worker_tasks is None:
self.parallel_worker_tasks = self._run_workers(
"start_worker_execution_loop",
async_run_tensor_parallel_workers_only=True,
**self.extra_execute_model_run_workers_kwargs)

# Only the driver worker returns the sampling results.
return self._driver_execute_model(execute_model_req)
driver_outputs = self._driver_execute_model(execute_model_req)
assert driver_outputs is not None
return driver_outputs

def stop_remote_worker_execution_loop(self) -> None:
if self.parallel_worker_tasks is None:
Expand Down
Loading

0 comments on commit 0acdd85

Please sign in to comment.