Skip to content
/ SelfDeep Public

누구나 혼자서 공부할 수 있는 딥러닝 교재

Notifications You must be signed in to change notification settings

dhrim/SelfDeep

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

3 Commits
 
 

Repository files navigation

SelfDeep

누구나 혼자서 공부할 수 있는 딥러닝 교재


환경 설정


딥러닝을 위한 데이터 가공 라이브러리


딥러닝 학습 이해


기능에 따른 접근법법

딥러닝 모델 - Classification

검색


딥러닝 모델 - Regression


딥러닝 모델 - 생성형 GAN


## 딥러닝 활용 사례 - [의학논문 리뷰](https://docs.google.com/presentation/d/1SZ-m4XVepS94jzXDL8VFMN2dh9s6jaN5fVsNhQ1qwEU/edit) - 흥미로운 딥러닝 결과 : [some_interesting_deep_learning.pptx](./material/deep_learning/some_interesting_deep_learning.pptx) - yolo를 사용한 실시간 불량품 탐지 : https://drive.google.com/file/d/194UpsjG7MyEvWlmJeqfcocD-h-zy_4mR/view?usp=sharing - YOLO를 사용한 자동차 번호판 탐지 : https://drive.google.com/file/d/1jlKzCaKj5rGRXIhwMXtYtVnx_XLauFiL/view?usp=sharing - 딥러닝 이상탐지 : [deep_learning_anomaly_detection.pptx](./material/deep_learning/deep_learning_anomaly_detection.pptx) - GAN을 사용한 생산설비 이상 탐지 : [anomaly_detection_using_gan.pptx](./material/deep_learning/anomaly_detection_using_gan.pptx) - GAN을 사용한 MNIST 이상 탐지 : [anomaly_detection_mnist_using_wgan_gp.ipynb](./material/deep_learning/anomaly_detection_mnist_using_wgan_gp.ipynb) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/dhrim/2022_WISET/blob/main/material/deep_learning/anomaly_detection_mnist_using_wgan_gp.ipynb) - 이상탐지 동영상 : [drillai_anomaly_detect.mp4](./material/deep_learning/drillai_anomaly_detect.mp4) - 훌륭한 논문 리스트 : https://github.com/floodsung/Deep-Learning-Papers-Reading-Roadmap - online CNN 시각화 자료 : https://poloclub.github.io/cnn-explainer/ - GradCAM : [grad_cam.ipynb](./material/deep_learning/grad_cam.ipynb) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/dhrim/2022_WISET/blob/main/material/deep_learning/grad_cam.ipynb) - 서버 설치 기록 : [2019-10-17_setup_server.pdf](./material/env/2019-10-17_setup_server.pdf)

실습한 자료

practice/2022_WISET


데이터 형태에 따른 접근법


성능 개선


기타 실습


How-To


교육에 사용된 외부 자료


딥러닝 활용을 위한 지식 구조

Environment
    jupyter
	colab
	usage
		!, %, run
    GCP virtual machine
linux
	ENV
	command
		cd, pwd, ls
		mkdir, rm, cp
		head, more, tail, cat
	util
		apt
		git, wget
		grep, wc, tree
		tar, unrar, unzip
	gpu
		nvidia-smi

python
	env
		python
			interactive
			execute file
		pip
	syntax
        variable
        data
            tuple
            list
            dict
            set
        loop
        if
        comprehensive list
        function
        class
	module
		import

libray
    numpy
        load
        operation
        shape
        slicing
        reshape
        axis + sum, mean
    pandas
        load
        view
	    operation
        to numpy
    seaborn
        charts
    matplot
        plot
        scatter
        hist
        multi draw
        show image

Deep Learning
    DNN
        concept
            layer, node, weight, bias, activation
            cost function
            GD, BP
        data
            x, y
            train, validate, test
            shuffle
        learning curve : accuracy, loss
        tuning
            overfitting, underfitting
            dropout, batch normalization, regularization
            data augmentation
        Transfer Learning
    type
        supervised
        unsupervised
        reinforcement
    model
        CNN
            vanilla, named CNN
        RNN
        GAN
    task
        Classification
        Object Detection
        Generation
	Segmentation
	Pose Extraction
	Noise Removing
	Super Resolution
	Question answering
	Auto Captioning
    data type
    	attribute data
	image data
	natural language data
	time series data

TensorFlow/Keras
    basic frame
        data preparing
            x, y
            train, valid, test
            normalization
            ImageDataGenerator
        fit
        evaluate
        predict
    model
        activation function
        initializer
    tuning
        learning rate
        regularizer
        dropout
        batch normalization
    save/load
    compile
        optimizer
        loss
        metric

About

누구나 혼자서 공부할 수 있는 딥러닝 교재

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published