Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Fix prediction error. #11167

Merged
merged 1 commit into from
Jan 14, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 2 additions & 2 deletions include/xgboost/predictor.h
Original file line number Diff line number Diff line change
Expand Up @@ -51,12 +51,12 @@ class PredictionContainer : public DMatrixCache<PredictionCacheEntry> {

public:
PredictionContainer() : DMatrixCache<PredictionCacheEntry>{DefaultSize()} {}
PredictionCacheEntry& Cache(std::shared_ptr<DMatrix> m, DeviceOrd device) {
std::shared_ptr<PredictionCacheEntry> Cache(std::shared_ptr<DMatrix> m, DeviceOrd device) {
auto p_cache = this->CacheItem(m);
if (!device.IsCPU()) {
p_cache->predictions.SetDevice(device);
}
return *p_cache;
return p_cache;
}
};

Expand Down
34 changes: 16 additions & 18 deletions src/learner.cc
Original file line number Diff line number Diff line change
Expand Up @@ -23,12 +23,10 @@
#include <limits> // for numeric_limits
#include <memory> // for allocator, unique_ptr, shared_ptr, operator==
#include <mutex> // for mutex, lock_guard
#include <set> // for set
#include <sstream> // for operator<<, basic_ostream, basic_ostream::opera...
#include <stack> // for stack
#include <string> // for basic_string, char_traits, operator<, string
#include <system_error> // for errc
#include <tuple> // for get
#include <unordered_map> // for operator!=, unordered_map
#include <utility> // for pair, as_const, move, swap
#include <vector> // for vector
Expand Down Expand Up @@ -1299,19 +1297,19 @@ class LearnerImpl : public LearnerIO {

this->ValidateDMatrix(train.get(), true);

auto& predt = prediction_container_.Cache(train, ctx_.Device());
auto predt = prediction_container_.Cache(train, ctx_.Device());

monitor_.Start("PredictRaw");
this->PredictRaw(train.get(), &predt, true, 0, 0);
TrainingObserver::Instance().Observe(predt.predictions, "Predictions");
this->PredictRaw(train.get(), predt.get(), true, 0, 0);
TrainingObserver::Instance().Observe(predt->predictions, "Predictions");
monitor_.Stop("PredictRaw");

monitor_.Start("GetGradient");
GetGradient(predt.predictions, train->Info(), iter, &gpair_);
GetGradient(predt->predictions, train->Info(), iter, &gpair_);
monitor_.Stop("GetGradient");
TrainingObserver::Instance().Observe(*gpair_.Data(), "Gradients");

gbm_->DoBoost(train.get(), &gpair_, &predt, obj_.get());
gbm_->DoBoost(train.get(), &gpair_, predt.get(), obj_.get());
monitor_.Stop("UpdateOneIter");
}

Expand All @@ -1329,8 +1327,8 @@ class LearnerImpl : public LearnerIO {
CHECK_EQ(this->learner_model_param_.OutputLength(), in_gpair->Shape(1))
<< "The number of columns in gradient should be equal to the number of targets/classes in "
"the model.";
auto& predt = prediction_container_.Cache(train, ctx_.Device());
gbm_->DoBoost(train.get(), in_gpair, &predt, obj_.get());
auto predt = prediction_container_.Cache(train, ctx_.Device());
gbm_->DoBoost(train.get(), in_gpair, predt.get(), obj_.get());
monitor_.Stop("BoostOneIter");
}

Expand All @@ -1355,13 +1353,13 @@ class LearnerImpl : public LearnerIO {

for (size_t i = 0; i < data_sets.size(); ++i) {
std::shared_ptr<DMatrix> m = data_sets[i];
auto &predt = prediction_container_.Cache(m, ctx_.Device());
auto predt = prediction_container_.Cache(m, ctx_.Device());
this->ValidateDMatrix(m.get(), false);
this->PredictRaw(m.get(), &predt, false, 0, 0);
this->PredictRaw(m.get(), predt.get(), false, 0, 0);

auto &out = output_predictions_.Cache(m, ctx_.Device()).predictions;
out.Resize(predt.predictions.Size());
out.Copy(predt.predictions);
auto &out = output_predictions_.Cache(m, ctx_.Device())->predictions;
out.Resize(predt->predictions.Size());
out.Copy(predt->predictions);

obj_->EvalTransform(&out);
for (auto& ev : metrics_) {
Expand Down Expand Up @@ -1395,12 +1393,12 @@ class LearnerImpl : public LearnerIO {
} else if (pred_leaf) {
gbm_->PredictLeaf(data.get(), out_preds, layer_begin, layer_end);
} else {
auto& prediction = prediction_container_.Cache(data, ctx_.Device());
this->PredictRaw(data.get(), &prediction, training, layer_begin, layer_end);
auto predt = prediction_container_.Cache(data, ctx_.Device());
this->PredictRaw(data.get(), predt.get(), training, layer_begin, layer_end);
// Copy the prediction cache to output prediction. out_preds comes from C API
out_preds->SetDevice(ctx_.Device());
out_preds->Resize(prediction.predictions.Size());
out_preds->Copy(prediction.predictions);
out_preds->Resize(predt->predictions.Size());
out_preds->Copy(predt->predictions);
if (!output_margin) {
obj_->PredTransform(out_preds);
}
Expand Down
Loading