-
Notifications
You must be signed in to change notification settings - Fork 508
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
144 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,144 @@ | ||
#!/usr/bin/env python3 | ||
import os | ||
import time | ||
import datetime | ||
import resource | ||
import argparse | ||
import socket | ||
from urllib.parse import urlparse | ||
|
||
import numpy as np | ||
import matplotlib.pyplot as plt | ||
import cv2 | ||
import PIL.Image | ||
from segment_anything import sam_model_registry, SamAutomaticMaskGenerator, SamPredictor | ||
|
||
parser = argparse.ArgumentParser() | ||
parser.add_argument("--checkpoint", type=str, default="https://dl.fbaipublicfiles.com/segment_anything/sam_vit_h_4b8939.pth") | ||
parser.add_argument('-i', '--images', action='append', nargs='*', help="Paths to images to test") | ||
|
||
parser.add_argument('-r', '--runs', type=int, default=2, help="Number of inferencing runs to do (for timing)") | ||
parser.add_argument('-w', '--warmup', type=int, default=1, help='the number of warmup iterations') | ||
|
||
parser.add_argument('-s', '--save', type=str, default='', help='CSV file to save benchmarking results to') | ||
|
||
args = parser.parse_args() | ||
|
||
if not args.images: | ||
args.images = [ | ||
"https://raw.githubusercontent.com/facebookresearch/segment-anything/main/notebooks/images/dog.jpg", | ||
"https://raw.githubusercontent.com/facebookresearch/segment-anything/main/notebooks/images/groceries.jpg", | ||
"https://raw.githubusercontent.com/facebookresearch/segment-anything/main/notebooks/images/truck.jpg", | ||
] | ||
else: | ||
args.images = [x[0] for x in args.images] | ||
|
||
print(args) | ||
|
||
import requests | ||
from tqdm import tqdm | ||
|
||
def download_from_url(url, filename=None): | ||
|
||
if filename is None: | ||
filename = os.path.basename(urlparse(url).path) | ||
|
||
if not os.path.isfile(filename): | ||
|
||
response = requests.get(url, stream=True) | ||
total_size_in_bytes= int(response.headers.get('content-length', 0)) | ||
block_size = 1024 # 1Kibibyte | ||
|
||
print(f"Downloading {filename} :") | ||
progress_bar = tqdm(total=total_size_in_bytes, unit='iB', unit_scale=True) | ||
|
||
with open(filename, 'wb') as file: | ||
for data in response.iter_content(block_size): | ||
progress_bar.update(len(data)) | ||
file.write(data) | ||
|
||
progress_bar.close() | ||
if total_size_in_bytes != 0 and progress_bar.n != total_size_in_bytes: | ||
print("ERROR, download failed!") | ||
|
||
return os.path.abspath(filename) | ||
|
||
def get_max_rss(): # peak memory usage in MB (max RSS - https://stackoverflow.com/a/7669482) | ||
return (resource.getrusage(resource.RUSAGE_SELF).ru_maxrss + resource.getrusage(resource.RUSAGE_CHILDREN).ru_maxrss) / 1024 | ||
|
||
def save_anns(cv2_image, anns): | ||
|
||
plt.imshow(cv2_image) | ||
|
||
if len(anns) == 0: | ||
return | ||
sorted_anns = sorted(anns, key=(lambda x: x['area']), reverse=True) | ||
ax = plt.gca() | ||
ax.set_autoscale_on(False) | ||
|
||
img = np.ones((sorted_anns[0]['segmentation'].shape[0], sorted_anns[0]['segmentation'].shape[1], 4)) | ||
img[:,:,3] = 0 | ||
for ann in sorted_anns: | ||
m = ann['segmentation'] | ||
color_mask = np.concatenate([np.random.random(3), [0.35]]) | ||
img[m] = color_mask | ||
plt.imshow(img) | ||
plt.axis('off') | ||
plt.savefig("sam_benchmark_output.jpg") | ||
|
||
avg_encoder=0 | ||
avg_latency=0 | ||
cv2_image=None | ||
mask=None | ||
|
||
CHECKPOINT_URL = "https://dl.fbaipublicfiles.com/segment_anything/sam_vit_h_4b8939.pth" | ||
FILENAME = os.path.basename(urlparse(args.checkpoint).path) | ||
download_from_url(args.checkpoint, FILENAME) | ||
|
||
sam_checkpoint = "sam_vit_h_4b8939.pth" | ||
model_type = "vit_h" | ||
device = "cuda" | ||
|
||
sam = sam_model_registry[model_type](checkpoint=sam_checkpoint) | ||
sam.to(device=device) | ||
mask_generator = SamAutomaticMaskGenerator(sam) | ||
|
||
imagepaths = [] | ||
for imageurl in args.images: | ||
imagepaths.append(download_from_url(imageurl)) | ||
|
||
for run in range(args.runs + args.warmup): | ||
|
||
for imagepath in imagepaths: | ||
|
||
cv2_image = cv2.imread(imagepath) | ||
cv2_image = cv2.cvtColor(cv2_image, cv2.COLOR_BGR2RGB) | ||
|
||
time_begin=time.perf_counter() | ||
masks = mask_generator.generate(cv2_image) | ||
time_elapsed=time.perf_counter() - time_begin | ||
|
||
print(f"{imagepath}") | ||
print(f" Full pipeline : {time_elapsed:.3f} seconds") | ||
|
||
if run >= args.warmup: | ||
avg_latency += time_elapsed | ||
|
||
avg_latency /= ( args.runs * len(args.images) ) | ||
|
||
memory_usage=get_max_rss() | ||
|
||
print(f"AVERAGE of {args.runs} runs:") | ||
print(f" latency --- {avg_latency:.3f} sec") | ||
print(f"Memory consumption : {memory_usage:.2f} MB") | ||
|
||
save_anns(cv2_image, masks) | ||
|
||
if args.save: | ||
if not os.path.isfile(args.save): # csv header | ||
with open(args.save, 'w') as file: | ||
file.write(f"timestamp, hostname, api, checkpoint, latency, memory\n") | ||
with open(args.save, 'a') as file: | ||
file.write(f"{datetime.datetime.now().strftime('%Y%m%d %H:%M:%S')}, {socket.gethostname()}, ") | ||
file.write(f"sam-python, {args.checkpoint}, {avg_latency}, {memory_usage}\n") | ||
|