Skip to content

An example repository to analyze cough audio data using transfer learning

Notifications You must be signed in to change notification settings

dwday/cough_transfer_learning

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

15 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

An example transfer learning approach to cough audio data classification using transfer learning

This example is the part of the below work. Please cite if you find it useful:

Akgun, D., et al. "A transfer learning-based deep learning approach for automated COVID-19diagnosis with audio data." Turkish Journal of Electrical Engineering and Computer Sciences 29.8 (2021): 2807-2823

@article{akgun2021transfer, title={A transfer learning-based deep learning approach for automated COVID-19diagnosis with audio data}, author={AKG{"U}N, DEVR{.I}M and KABAKU{\c{S}}, ABDULLAH TALHA and {\c{S}}ENT{"U}RK, ZEHRA KARAPINAR and {\c{S}}ENT{"U}RK, ARAFAT and K{"U}{\c{C}}{"U}KK{"U}LAHLI, ENVER}, journal={Turkish Journal of Electrical Engineering and Computer Sciences}, volume={29}, number={8}, pages={2807--2823}, year={2021} }

Converting audio data to image using Melspectogram:

alt text

Training system:

alt text

Example results

Batch size= 4 Learning rate= 0.005 Acc= [0.8695652 0.8913044 0.82417583 0.84615386 0.83516484] Average= 0.8532728 num_iters= 184

Batch size= 4 Learning rate= 0.001 Acc= [0.8695652 0.9130435 0.82417583 0.83516484 0.82417583] Average= 0.85322505 num_iters= 149

Batch size= 4 Learning rate= 0.0005 Acc= [0.8804348 0.90217394 0.84615386 0.85714287 0.82417583] Average= 0.8620163 num_iters= 109

Batch size= 4 Learning rate= 0.0001 Acc= [0.8804348 0.9130435 0.83516484 0.82417583 0.84615386] Average= 0.8597945 num_iters= 146

Batch size= 8 Learning rate= 0.005 Acc= [0.8863636 0.90909094 0.84090906 0.85227275 0.8863636 ] Average= 0.875 num_iters= 300

Batch size= 8 Learning rate= 0.001 Acc= [0.875 0.89772725 0.82954544 0.82954544 0.85227275] Average= 0.8568182 num_iters= 187

Batch size= 8 Learning rate= 0.0005 Acc= [0.89772725 0.90909094 0.84090906 0.84090906 0.85227275] Average= 0.8681818 num_iters= 224

Batch size= 8 Learning rate= 0.0001 Acc= [0.89772725 0.89772725 0.85227275 0.85227275 0.8636364 ] Average= 0.8727273 num_iters= 110

Batch size= 16 Learning rate= 0.005 Acc= [0.8875 0.9125 0.85 0.8625 0.875 ] Average= 0.87749994 num_iters= 295

Batch size= 16 Learning rate= 0.001 Acc= [0.8875 0.9125 0.85 0.8375 0.8375] Average= 0.86500007 num_iters= 158

Batch size= 16 Learning rate= 0.0005 Acc= [0.8625 0.925 0.8625 0.85 0.8375] Average= 0.8675 num_iters= 126

Batch size= 16 Learning rate= 0.0001 Acc= [0.9 0.925 0.85 0.85 0.8625] Average= 0.87750006 num_iters= 227

Batch size= 32 Learning rate= 0.005 Acc= [0.90625 0.90625 0.890625 0.875 0.859375] Average= 0.8875 num_iters= 160

Batch size= 32 Learning rate= 0.001 Acc= [0.890625 0.9375 0.875 0.859375 0.859375] Average= 0.884375 num_iters= 176

Batch size= 32 Learning rate= 0.0005 Acc= [0.875 0.9375 0.875 0.875 0.890625] Average= 0.890625 num_iters= 184

Batch size= 32 Learning rate= 0.0001 Acc= [0.90625 0.9375 0.875 0.84375 0.875 ] Average= 0.8875 num_iters= 139

Batch size= 64 Learning rate= 0.005 Acc= [0.875 0.921875 0.90625 0.859375 0.890625] Average= 0.890625 num_iters= 205

Batch size= 64 Learning rate= 0.001 Acc= [0.90625 0.90625 0.90625 0.828125 0.890625] Average= 0.8875 num_iters= 218

Batch size= 64 Learning rate= 0.0005 Acc= [0.90625 0.921875 0.90625 0.828125 0.859375] Average= 0.884375 num_iters= 208

Batch size= 64 Learning rate= 0.0001 Acc= [0.890625 0.9375 0.890625 0.875 0.890625] Average= 0.896875 num_iters= 300