-
Notifications
You must be signed in to change notification settings - Fork 64
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Showing
10 changed files
with
2,421 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,3 @@ | ||
# General-Purpose In-Context Learning by Meta-Learning Transformers | ||
|
||
Research code for the paper https://arxiv.org/abs/2212.04458 |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,324 @@ | ||
# coding=utf-8 | ||
# Copyright 2021 Google LLC | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# https://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
"""Supervised data loader.""" | ||
|
||
import functools | ||
from typing import NamedTuple, Optional, Tuple, Sequence | ||
|
||
import gin | ||
import haiku as hk | ||
import jax | ||
import jax.numpy as jnp | ||
from learned_optimization.research.data_driven import resnet | ||
import tensorflow.compat.v2 as tf | ||
import tensorflow_datasets as tfds | ||
|
||
|
||
def standardize( | ||
batch: Tuple[jnp.ndarray, jnp.ndarray], | ||
has_dataset_dim: bool = True, | ||
subsample: int = 0, | ||
) -> Tuple[jnp.ndarray, jnp.ndarray]: | ||
"""Z-normalizes the given batch. | ||
Args: | ||
batch: Tuple if images and labels. | ||
has_dataset_dim: Whether there is a dataset dimension. | ||
subsample: Size of the subsample in batch and sequence dimension. | ||
Returns: | ||
Z-normalized batch. | ||
""" | ||
|
||
imgs, labels = batch | ||
if has_dataset_dim and subsample > 0: | ||
# of shape [dataset, batch, sequence, ...] | ||
mean = jnp.mean(imgs[0, :subsample, :subsample]) | ||
std = jnp.std(imgs[0, :subsample, :subsample]) | ||
elif subsample > 0: | ||
# of shape [batch, sequence, ...] | ||
mean = jnp.mean(imgs[:subsample, :subsample]) | ||
std = jnp.std(imgs[:subsample, :subsample]) | ||
else: | ||
mean = jnp.mean(imgs) | ||
std = jnp.std(imgs) | ||
imgs = (imgs - mean) / (std + 1e-8) | ||
return imgs, labels | ||
|
||
|
||
@gin.configurable('preprocess') | ||
class PreprocessSpec(NamedTuple): | ||
"""A specification for preprocessing input data. | ||
Attributes: | ||
resize: Target width and height of image. | ||
channel_expand: Whether to expand channels to 3 dimensions. | ||
use_patches: Whether to create patches for vision-transformer processing. | ||
""" | ||
|
||
resize: Optional[int] = 14 | ||
channel_expand: bool = False | ||
use_patches: bool = False | ||
standardize_sub_sample = 0 | ||
|
||
|
||
@gin.configurable() | ||
class RandomDataset: | ||
"""A dataset that associcates random observations with random class labels.""" | ||
|
||
def __init__( | ||
self, | ||
key, | ||
batch_size: int, | ||
dataset_size: Optional[int], | ||
sequence_length: int, | ||
preprocess_spec: PreprocessSpec, | ||
normalize: bool, | ||
bias_prob: float = 0.0, | ||
image_shape: Sequence[int] = (14, 14), | ||
num_datapoints: int = 10, | ||
num_classes: int = 10, | ||
): | ||
self.rng = hk.PRNGSequence(key) | ||
self._batch_size = batch_size | ||
self._sequence_length = sequence_length | ||
self._dataset_size = dataset_size | ||
self._preprocess_spec = preprocess_spec | ||
self._normalize = normalize | ||
self._bias_prob = bias_prob | ||
self._bias_key = next(self.rng) | ||
self._image_shape = image_shape | ||
self._num_datapoints = num_datapoints | ||
self._num_classes = num_classes | ||
std_p = functools.partial( | ||
standardize, | ||
has_dataset_dim=dataset_size is not None, | ||
subsample=preprocess_spec.standardize_sub_sample, | ||
) | ||
self._standardize = jax.jit(std_p) | ||
|
||
if dataset_size is not None: | ||
self._next = jax.jit(self._generate_tasks) | ||
else: | ||
self._next = jax.jit(self._generate_task) | ||
|
||
def _generate_task(self, key): | ||
"""Generate a new unique task. | ||
Args: | ||
key: A jax PRNGKey | ||
Returns: | ||
A Tuple of images and labels | ||
""" | ||
key_img, key_choice = jax.random.split(key, num=2) | ||
del key | ||
spec = self._preprocess_spec | ||
images = jax.random.uniform( | ||
key_img, | ||
[self._num_datapoints] + list(self._image_shape), | ||
minval=0.0, | ||
maxval=1.0, | ||
) | ||
labels = jax.nn.one_hot( | ||
jnp.arange(self._num_datapoints) % self._num_classes, self._num_classes | ||
) | ||
|
||
if spec.channel_expand: | ||
images = jnp.concatenate([images] * 3, axis=-1) | ||
if not spec.use_patches: | ||
images = jnp.reshape(images, [self._num_datapoints, -1]) | ||
|
||
choice_shape = (self._batch_size, self._sequence_length) | ||
indices = jax.random.choice(key_choice, 10, choice_shape) | ||
batched_images = images[indices] | ||
batched_labels = labels[indices] | ||
|
||
return batched_images, batched_labels | ||
|
||
def _generate_tasks(self, key): | ||
key_tasks, key_mask = jax.random.split(key) | ||
del key | ||
key_tasks = jax.random.split(key_tasks, self._dataset_size) | ||
mask = jax.random.bernoulli( | ||
key_mask, p=self._bias_prob, shape=(self._dataset_size,)) | ||
key_tasks = jnp.where(mask[:, None], self._bias_key[None], key_tasks) | ||
return jax.vmap(self._generate_task)(key_tasks) | ||
|
||
def __next__(self): | ||
item = self._next(next(self.rng)) | ||
if self._normalize: | ||
item = self._standardize(item) | ||
return item | ||
|
||
def __iter__(self): | ||
return self | ||
|
||
|
||
@gin.configurable() | ||
class DataLoader: | ||
"""Loads a specific tensorflow dataset and processes data for experiment.""" | ||
|
||
DATASET_STATS = { | ||
'cifar10': {'mean': 0.4733630120754242, 'std': 0.2515689432621002}, | ||
'fashion_mnist': {'mean': 0.13066047430038452, 'std': 0.3081078827381134}, | ||
'mnist': {'mean': 0.13066047430038452, 'std': 0.3081078827381134}, | ||
'svhn_cropped': {'mean': 0.4514186382293701, 'std': 0.19929124414920807}, | ||
'random': {'mean': 0.0, 'std': 1.0}, | ||
'sum': {'mean': 0.0, 'std': 1.0}, | ||
'emnist': {'mean': 0.1739204376935959, 'std': 0.3319065570831299}, | ||
'kmnist': {'mean': 0.19176216423511505, 'std': 0.34834328293800354}, | ||
'omniglot': {'mean': 0.9220603108406067, 'std': 0.26807650923728943}, | ||
'omniglot_fewshot': { | ||
'mean': 0.9220603108406067, | ||
'std': 0.26807650923728943, | ||
}, | ||
} | ||
|
||
def __init__( | ||
self, | ||
dataset_name: str, | ||
num_classes=10, | ||
shuffle_size=10000, | ||
prefetch_size=10, | ||
sequence_length=100, | ||
preprocess_spec=None, | ||
normalize=True, | ||
use_fixed_ds_stats: bool = False, | ||
pretrained_embed: bool = False, | ||
): | ||
self._num_classes = num_classes | ||
self._dataset_name = dataset_name | ||
self._shuffle_size = shuffle_size | ||
self._prefetch_size = prefetch_size | ||
self._sequence_length = sequence_length | ||
self._preprocess_spec = preprocess_spec or PreprocessSpec() | ||
self._normalize = normalize | ||
self._use_fixed_ds_stats = use_fixed_ds_stats | ||
self._pretrained_embed = pretrained_embed | ||
|
||
# Load pre-trained embedding params | ||
if pretrained_embed: | ||
self._params_embed = resnet.load_params() | ||
self._resnet_embed = jax.jit(resnet.embed) | ||
|
||
def get_dataset( | ||
self, | ||
set_name: str, | ||
batch_size: int, | ||
dataset_name: Optional[str] = None, | ||
dataset_size: Optional[int] = None, | ||
key: Optional[jax.Array] = None, | ||
): | ||
"""Create numpy iterator of dataset specified by dataset_name. | ||
Args: | ||
set_name: Dataset subset to load. | ||
batch_size: Batch size of returned data. | ||
dataset_name: Name of dataset to load. | ||
dataset_size: Number of datasets to return each iteration. | ||
key: An optional key to use for jax-based datasets. | ||
Returns: | ||
Numpy iterator of data. | ||
""" | ||
if dataset_name is None: | ||
dataset_name = self._dataset_name | ||
|
||
if dataset_name == 'random': | ||
ds = RandomDataset(key, batch_size, dataset_size, self._sequence_length, | ||
self._preprocess_spec, self._normalize) | ||
return iter(ds) | ||
else: | ||
return self._get_tf_dataset(set_name, batch_size, dataset_name, | ||
dataset_size) | ||
|
||
def _get_tf_dataset(self, | ||
set_name: str, | ||
batch_size: int, | ||
dataset_name: Optional[str] = None, | ||
dataset_size: Optional[int] = None): | ||
"""Create numpy iterator of tensorflow dataset. | ||
Args: | ||
set_name: Dataset subset to load. | ||
batch_size: Batch size of returned data. | ||
dataset_name: Name of dataset to load. | ||
dataset_size: Number of datasets to return each iteration. | ||
Returns: | ||
Numpy iterator of tensorflow dataset. | ||
""" | ||
ds = tfds.load(dataset_name, split=set_name) | ||
if self._pretrained_embed: | ||
ds = ds.map(self._process) | ||
ds = ds.shuffle(self._shuffle_size) | ||
|
||
def embed(*args): | ||
return tf.py_function(self._embed, list(args), (tf.float32, tf.float32)) | ||
|
||
ds = ds.batch(128).map(embed).unbatch().cache() | ||
else: | ||
ds = ds.map(self._process).cache() | ||
ds = ds.repeat().shuffle(self._shuffle_size) | ||
ds = ds.batch(self._sequence_length).batch(batch_size) | ||
if dataset_size is not None: | ||
ds = ds.batch(dataset_size) | ||
ds = ds.prefetch(self._prefetch_size) | ||
|
||
itr = ds.as_numpy_iterator() | ||
if not self._use_fixed_ds_stats and self._normalize: | ||
std_p = functools.partial( | ||
standardize, | ||
has_dataset_dim=dataset_size is not None, | ||
subsample=self._preprocess_spec.standardize_sub_sample, | ||
) | ||
itr = map(jax.jit(std_p), itr) | ||
return itr | ||
|
||
def _embed(self, x, y): | ||
x = self._resnet_embed(self._params_embed, x.numpy()) | ||
x = (x - jnp.mean(x)) / jnp.std(x) | ||
x = jax.nn.tanh(x) | ||
x = x.reshape((x.shape[0], -1)) | ||
return x, y | ||
|
||
def _process(self, x): | ||
"""Preprocesses vision data. | ||
Args: | ||
x: Each element of the dataset iterator. | ||
Returns: | ||
A tuple of image and label after processing. | ||
""" | ||
img = x['image'] | ||
spec = self._preprocess_spec | ||
if spec.resize: | ||
img = tf.image.resize(img, [spec.resize, spec.resize]) | ||
if spec.channel_expand and img.shape[-1] == 1: | ||
img = tf.concat([img] * 3, axis=-1) | ||
if not spec.use_patches: | ||
img = tf.reshape(img, [-1]) | ||
# TODO(lkirsch) keep uint | ||
img = tf.cast(img, tf.float32) / 255 | ||
|
||
if self._use_fixed_ds_stats: | ||
stats = self.DATASET_STATS[self._dataset_name] | ||
img = (img - stats['mean']) / stats['std'] | ||
|
||
label = tf.one_hot(x['label'], self._num_classes) | ||
return img, label |
Oops, something went wrong.