Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Profile moving devices #190

Merged
merged 1 commit into from
Jan 1, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion .pre-commit-config.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -35,7 +35,7 @@ repos:
args: [--include-version-classifiers, --max-py-version, "3.11"]

- repo: https://github.com/asottile/pyupgrade
rev: v3.19.0
rev: v3.19.1
hooks:
- id: pyupgrade
args: [--py37-plus, --keep-runtime-typing]
Expand Down
95 changes: 95 additions & 0 deletions examples/profiling/move-device.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,95 @@
# This file is part of dxtb.
#
# SPDX-Identifier: Apache-2.0
# Copyright (C) 2024 Grimme Group
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Simple energy calculation.
"""
import functools
import logging
import traceback

import torch

logging.basicConfig(
level=logging.INFO,
format="%(asctime)s - %(message)s",
)


def log_tensor_move(func):
@functools.wraps(func)
def wrapper(self, *args, **kwargs):
device = None
if args:
device = args[0]
elif "device" in kwargs:
device = kwargs["device"]

# Get tensor details
tensor_id = id(self)
tensor_shape = tuple(self.size())
tensor_dtype = self.dtype
tensor_device = self.device

# Capture stack trace
stack = "".join(traceback.format_stack(limit=4)[:-1])

# Only log if the tensor is moved to a different device
if tensor_device == device:
return func(self, *args, **kwargs)

logging.info(
f"Tensor ID: {tensor_id}, Shape: {tensor_shape}, Dtype: {tensor_dtype}, "
f"From Device: {tensor_device}, To Device: {device}, "
f"Called from:\n{stack}"
)

return func(self, *args, **kwargs)

return wrapper


def override_tensor_methods():
tensor_methods_to_override = ["to", "cuda", "cpu"]

for method_name in tensor_methods_to_override:
original_method = getattr(torch.Tensor, method_name)
decorated_method = log_tensor_move(original_method)
setattr(torch.Tensor, method_name, decorated_method)


override_tensor_methods()

###############################################################################
###############################################################################
###############################################################################
###############################################################################

import dxtb

dd = {"dtype": torch.double, "device": torch.device("cuda:0")}

# LiH
numbers = torch.tensor([3, 1], device=dd["device"])
positions = torch.tensor([[0.0, 0.0, 0.0], [0.0, 0.0, 1.5]], **dd)

# instantiate a calculator
opts = {"verbosity": 6}
calc = dxtb.calculators.GFN1Calculator(numbers, opts=opts, **dd)

# compute the energy
pos = positions.clone().requires_grad_(True)
energy = calc.get_energy(pos)
26 changes: 23 additions & 3 deletions src/dxtb/_src/basis/indexhelper.py
Original file line number Diff line number Diff line change
Expand Up @@ -282,7 +282,11 @@ def __init__(

@classmethod
def from_numbers(
cls, numbers: Tensor, par: Param, batch_mode: int | None = None
cls,
numbers: Tensor,
par: Param,
batch_mode: int | None = None,
move_to_numbers_device: bool = True,
) -> IndexHelper:
"""
Construct an index helper instance from atomic numbers and a
Expand All @@ -308,21 +312,32 @@ def from_numbers(
- 0: Single system
- 1: Multiple systems with padding
- 2: Multiple systems with no padding (conformer ensemble)
move_to_numbers_device : bool
Move the resulting tensors to the device of the ``numbers`` tensor.
This should be switched off for GPU calculations that use `libcint`
for integrals as the :class:`.IndexHelper` has to be on the CPU
for this step.

Returns
-------
IndexHelper
Instance of index helper for given basis set.
"""
angular = get_elem_angular(par.element)
return cls.from_numbers_angular(numbers, angular, batch_mode)
return cls.from_numbers_angular(
numbers,
angular,
batch_mode,
move_to_numbers_device=move_to_numbers_device,
)

@classmethod
def from_numbers_angular(
cls,
numbers: Tensor,
angular: dict[int, list[int]],
batch_mode: int | None = None,
move_to_numbers_device: bool = True,
) -> IndexHelper:
"""
Construct an index helper instance from atomic numbers and their
Expand Down Expand Up @@ -350,14 +365,19 @@ def from_numbers_angular(
- 0: Single system
- 1: Multiple systems with padding
- 2: Multiple systems with no padding (conformer ensemble)
move_to_numbers_device : bool
Move the resulting tensors to the device of the ``numbers`` tensor.
This should be switched off for GPU calculations that use `libcint`
for integrals as the :class:`.IndexHelper` has to be on the CPU
for this step.

Returns
-------
IndexHelper
Instance of index helper for given basis set.
"""
device = numbers.device
cpu = torch.device("cpu")
device = numbers.device if move_to_numbers_device else cpu

# Ensure that all tensors are moved to CPU to avoid inefficient
# memory transfers between devices (.item() and native for-loops).
Expand Down
10 changes: 5 additions & 5 deletions src/dxtb/_src/calculators/config/scf.py
Original file line number Diff line number Diff line change
Expand Up @@ -110,7 +110,7 @@ def __init__(
# Fermi
fermi_etemp: float = defaults.FERMI_ETEMP,
fermi_maxiter: int = defaults.FERMI_MAXITER,
fermi_thresh: dict = defaults.FERMI_THRESH,
fermi_thresh: float | int | None = defaults.FERMI_THRESH,
fermi_partition: str | int = defaults.FERMI_PARTITION,
# PyTorch
device: torch.device = get_default_device(),
Expand Down Expand Up @@ -376,7 +376,7 @@ class ConfigFermi:
maxiter: int
"""Maximum number of iterations for Fermi smearing."""

thresh: dict
thresh: float | int | None
"""Float data type dependent threshold for Fermi iterations."""

partition: int
Expand All @@ -395,7 +395,7 @@ def __init__(
*,
etemp: float | int = defaults.FERMI_ETEMP,
maxiter: int = defaults.FERMI_MAXITER,
thresh: dict = defaults.FERMI_THRESH,
thresh: float | int | None = defaults.FERMI_THRESH,
partition: str | int = defaults.FERMI_PARTITION,
# PyTorch
device: torch.device = get_default_device(),
Expand Down Expand Up @@ -444,7 +444,7 @@ def __init__(
f"'{type(partition)}' was given."
)

def info(self) -> dict[str, dict[str, float | int | str]]:
def info(self) -> dict[str, dict[str, None | float | int | str]]:
"""
Return a dictionary with the Fermi smearing configuration.

Expand All @@ -457,7 +457,7 @@ def info(self) -> dict[str, dict[str, float | int | str]]:
"Fermi Smearing": {
"Temperature": self.etemp,
"Maxiter": self.maxiter,
"Threshold": self.thresh[self.dtype].item(),
"Threshold": self.thresh,
"Partioning": labels.FERMI_PARTITION_MAP[self.partition],
}
}
Expand Down
16 changes: 13 additions & 3 deletions src/dxtb/_src/calculators/types/base.py
Original file line number Diff line number Diff line change
Expand Up @@ -459,7 +459,7 @@ def __init__(
numbers : Tensor
Atomic numbers for all atoms in the system (shape: ``(..., nat)``).
par : Param
Representation of an extended tight-binding model (full xtb
Representation of an extended tight-binding model (full xTB
parametrization). Decides energy contributions.
classical : Sequence[Classical] | None, optional
Additional classical contributions. Defaults to ``None``.
Expand Down Expand Up @@ -515,6 +515,16 @@ def __init__(
if self.opts.batch_mode == 0 and numbers.ndim > 1:
self.opts.batch_mode = 1

# PERF: The IndexHelper is created on CPU and moved to the device of the
# `number` tensor. This si required for the instantiation of the
# integral classes later in this constructor. However, if the `libcint`
# interface is used, we need to transfer the IndexHelper to the CPU
# again. Correspondingly, we have one unnecessary transfer.
# (It could be circumvented if the intgrals are calculated immediately
# after instantiation, i.e., compute integrals with `libcint` first,
# then move IndexHelper to the device and compute Hamiltonian. However,
# this would require a change in the code structure. So we take the
# very small performance hit here.)
self.ihelp = IndexHelper.from_numbers(
numbers, par, self.opts.batch_mode
)
Expand Down Expand Up @@ -546,7 +556,7 @@ def __init__(
else:
raise TypeError(
"Expected 'interaction' to be 'None' or of type 'Interaction', "
"'list[Interaction]' or 'tuple[Interaction]', but got "
"'list[Interaction]', or 'tuple[Interaction]', but got "
f"'{type(interaction).__name__}'."
)

Expand Down Expand Up @@ -590,7 +600,7 @@ def __init__(
else:
raise TypeError(
"Expected 'classical' to be 'None' or of type 'Classical', "
"'list[Classical]' or 'tuple[Classical]', but got "
"'list[Classical]', or 'tuple[Classical]', but got "
f"'{type(classical).__name__}'."
)

Expand Down
11 changes: 5 additions & 6 deletions src/dxtb/_src/constants/defaults.py
Original file line number Diff line number Diff line change
Expand Up @@ -200,12 +200,11 @@
FERMI_MAXITER = 200
"""Maximum number of iterations for Fermi smearing."""

FERMI_THRESH = {
torch.float16: torch.tensor(1e-2, dtype=torch.float16),
torch.float32: torch.tensor(1e-5, dtype=torch.float32),
torch.float64: torch.tensor(1e-10, dtype=torch.float64),
}
"""Convergence thresholds for different float data types."""
FERMI_THRESH = None
"""
Convergence thresholds for different float data types.
``None`` uses sqrt of machine epsilon.
"""

FERMI_PARTITION = labels.FERMI_PARTITION_EQUAL
"""Partitioning scheme for electronic free energy."""
Expand Down
11 changes: 4 additions & 7 deletions src/dxtb/_src/wavefunction/filling.py
Original file line number Diff line number Diff line change
Expand Up @@ -26,11 +26,10 @@
from __future__ import annotations

import torch
from tad_mctc.convert import any_to_tensor

from dxtb._src.typing import DD, Tensor

from ..constants import defaults

__all__ = [
"get_alpha_beta_occupation",
"get_aufbau_occupation",
Expand Down Expand Up @@ -266,7 +265,7 @@ def get_fermi_occupation(
emo: Tensor,
kt: Tensor | None = None,
mask: Tensor | None = None,
thr: dict[torch.dtype, Tensor] | None = None,
thr: Tensor | float | int | None = None,
maxiter: int = 200,
) -> Tensor:
"""
Expand Down Expand Up @@ -325,10 +324,8 @@ def get_fermi_occupation(
return torch.zeros_like(emo)

if thr is None:
thr = defaults.FERMI_THRESH
thresh = thr.get(emo.dtype, torch.tensor(1e-5, dtype=torch.float)).to(
emo.device
)
thr = torch.tensor(torch.finfo(emo.dtype).eps, **dd) ** 0.5
thresh = any_to_tensor(thr, **dd)

e_fermi, homo = get_fermi_energy(nel, emo, mask=mask)

Expand Down
16 changes: 10 additions & 6 deletions test/test_scf/test_elements.py
Original file line number Diff line number Diff line change
Expand Up @@ -322,11 +322,6 @@
opts = {
"fermi_etemp": 300,
"fermi_maxiter": 500,
"fermi_thresh": {
# instead of 1e-5
torch.float32: torch.tensor(1e-4, dtype=torch.float32),
torch.float64: torch.tensor(1e-10, dtype=torch.float64),
},
"scf_mode": labels.SCF_MODE_IMPLICIT_NON_PURE,
"scp_mode": labels.SCP_MODE_POTENTIAL, # better convergence for atoms
"verbosity": 0,
Expand All @@ -348,7 +343,14 @@ def test_element(dtype: torch.dtype, number: int) -> None:

# opts["spin"] = uhf[number - 1]
atol = 1e-5 if dtype == torch.float else 1e-6
options = dict(opts, **{"f_atol": atol, "x_atol": atol})
options = dict(
opts,
**{
"f_atol": atol,
"x_atol": atol,
"fermi_thresh": 1e-4 if dtype == torch.float32 else 1e-10,
},
)
calc = Calculator(numbers, par, opts=options, **dd)
results = calc.singlepoint(positions, charges)
assert pytest.approx(r.cpu(), abs=tol) == results.scf.sum(-1).cpu()
Expand Down Expand Up @@ -377,6 +379,7 @@ def test_element_cation(dtype: torch.dtype, number: int) -> None:
**{
"f_atol": 1e-5, # avoids Jacobian inversion error
"x_atol": 1e-5, # avoids Jacobian inversion error
"fermi_thresh": 1e-4 if dtype == torch.float32 else 1e-10,
},
)
calc = Calculator(numbers, par, opts=options, **dd)
Expand Down Expand Up @@ -413,6 +416,7 @@ def test_element_anion(dtype: torch.dtype, number: int) -> None:
**{
"f_atol": 1e-5, # avoid Jacobian inversion error
"x_atol": 1e-5, # avoid Jacobian inversion error
"fermi_thresh": 1e-4 if dtype == torch.float32 else 1e-10,
},
)
calc = Calculator(numbers, par, opts=options, **dd)
Expand Down
Loading