Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[WIP] Builders for solvent and electrolyte classical molecular dynamics runs #1135

Open
wants to merge 4 commits into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions emmet-builders/emmet/builders/openmm/__init__.py
Original file line number Diff line number Diff line change
@@ -0,0 +1 @@
from emmet.builders.openmm.core import ElectrolyteBuilder
362 changes: 362 additions & 0 deletions emmet-builders/emmet/builders/openmm/core.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,362 @@
from typing import Optional, List, Union
from pathlib import Path

import numpy as np

from maggma.core import Builder, Store
from maggma.stores import MemoryStore
from emmet.builders.openmm.utils import (
create_solute,
identify_solute,
identify_networking_solvents,
)
from emmet.core.openff.solvation import SolvationDoc
from emmet.core.openff.benchmarking import SolventBenchmarkingDoc
from emmet.core.openmm import OpenMMTaskDocument
from emmet.core.openmm.calculations import CalculationsDoc
from emmet.core.utils import jsanitize

from emmet.builders.openmm.openmm_utils import (
insert_blobs,
instantiate_universe,
resolve_traj_path,
task_doc_to_universe,
)


class ElectrolyteBuilder(Builder):
"""
Builder to create solvation and calculations documents from OpenMM task documents.

This class processes molecular dynamics (MD) simulations and generates
comprehensive reports including solvation properties and calculation results.
It leverages the OpenFF toolkit and MDAnalysis for molecular topology and trajectory
handling, respectively.
"""

def __init__(
self,
md_docs: Store,
blobs: Store,
solute: Optional[Store] = None,
calculations: Optional[Store] = None,
query: Optional[dict] = None,
solute_analysis_classes: Union[List[str], str] = "all",
solvation_fallback_radius: float = 3,
chunk_size: int = 10,
):
self.md_docs = md_docs
self.blobs = blobs
self.solute = solute or MemoryStore()
self.calculations = calculations or MemoryStore()
self.query = query or {}
self.solute_analysis_classes = solute_analysis_classes
self.solvation_fallback_radius = solvation_fallback_radius

self.md_docs.key = "uuid"
self.blobs.key = "blob_uuid"
if self.solute:
self.solute.key = "job_uuid"
if self.calculations:
self.calculations.key = "job_uuid"

super().__init__(
sources=[md_docs, blobs],
targets=[self.solute, self.calculations],
chunk_size=chunk_size,
)

# def prechunk(self, number_splits: int): # pragma: no cover
# """
# Prechunk method to perform chunking by the key field
# """
# q = dict(self.query)
# keys = self.electronic_structure.newer_in(
# self.materials, criteria=q, exhaustive=True
# )
# N = ceil(len(keys) / number_splits)
# for split in grouper(keys, N):
# yield {"query": {self.materials.key: {"$in": list(split)}}}

def get_items(self, local_trajectories=False):
self.logger.info("Electrolyte builder started.")

hosts = self.md_docs.query(self.query, ["hosts"])
flow_ids = {doc["hosts"][-1] for doc in hosts} # top level flows

job_groups = []
for flow_id in flow_ids:
# the last item in hosts should be the top level workflow
host_match = {"$expr": {"$eq": [{"$arrayElemAt": ["$hosts", -1]}, flow_id]}}
job_groups.append(list(self.md_docs.query(criteria=host_match)))

items = []
for jobs in job_groups:
# find the job with the most calcs in the flow, presumably the last
len_calcs = [len(job["output"]["calcs_reversed"] or []) for job in jobs]
last_job = jobs[np.argmax(len_calcs)]

insert_blobs(
self.blobs, last_job["output"], include_traj=not local_trajectories
)

items.append(last_job)

return items

def get_items_from_directories(self):
# query will be ignored
return

def process_items(
self,
items: List,
local_trajectories: bool = False,
rebase_traj_path: Optional[tuple[Path, Path]] = None,
):
"""

Parameters
----------
items: the items from get_items
local_trajectories: whether to look for files locally in lieu of downloading
rebase_traj_path: useful if the launch directory has moved

Returns
-------

"""
self.logger.info(f"Processing {len(items)} materials for electrolyte builder.")

processed_items = []
for item in items:
# create task_doc
task_doc = OpenMMTaskDocument.parse_obj(item["output"])

# _ is needed bc traj_path may be a tmpfile and a reference must be in scope
traj_path, _ = resolve_traj_path(
task_doc, local_trajectories, rebase_traj_path
)

u = task_doc_to_universe(task_doc, traj_path)

# create solute_doc
solute = create_solute(
u,
solute_name=identify_solute(u),
networking_solvents=identify_networking_solvents(u),
fallback_radius=self.solvation_fallback_radius,
analysis_classes=self.solute_analysis_classes,
)
solute.run()
solvation_doc = SolvationDoc.from_solute(
solute, job_uuid=item["uuid"], flow_uuid=item["hosts"][-1]
)
calculations_doc = CalculationsDoc.from_calcs_reversed(
task_doc.calcs_reversed,
job_uuid=item["uuid"],
flow_uuid=item["hosts"][-1],
)

# create docs
# TODO: what cleanup do I need?
docs = {
"solute": jsanitize(solvation_doc.model_dump()),
"calculations": jsanitize(calculations_doc.model_dump()),
}

processed_items.append(docs)

return processed_items

def update_targets(self, items: List):
if len(items) > 0:
self.logger.info(f"Found {len(items)} electrolyte docs to update.")

solutes = [item["solute"] for item in items]
self.solute.update(solutes)

calculations = [item["calculations"] for item in items]
self.calculations.update(calculations)

else:
self.logger.info("No items to update.")

def instantiate_universe(
self,
job_uuid: str,
traj_directory: Union[str, Path] = ".",
overwrite_local_traj: bool = True,
):
"""
Instantiate a MDAnalysis universe from a task document.

This is useful if you want to analyze a small number of systems
without running the whole build pipeline.

To get a solute, call create_solute using the universe. See
the body of process_items for the appropriate syntax.

Args:
job_uuid: str
The UUID of the job.
traj_directory: str
Name of the DCD file to write.
overwrite_local_traj: bool
Whether to overwrite the local trajectory if it exists.
"""
return instantiate_universe(
self.md_docs, self.blobs, job_uuid, traj_directory, overwrite_local_traj
)


class BenchmarkingBuilder(Builder):
"""
Builder to create solvation and calculations documents from OpenMM task documents.

This class processes molecular dynamics (MD) simulations and generates
comprehensive reports including solvation properties and calculation results.
It leverages the OpenFF toolkit and MDAnalysis for molecular topology and trajectory
handling, respectively.
"""

def __init__(
self,
md_docs: Store,
blobs: Store,
benchmarking: Optional[Store] = None,
query: Optional[dict] = None,
chunk_size: int = 10,
):
self.md_docs = md_docs
self.blobs = blobs
self.benchmarking = benchmarking or MemoryStore()
self.query = query or {}

self.md_docs.key = "uuid"
self.blobs.key = "blob_uuid"
self.benchmarking.key = "job_uuid"

super().__init__(
sources=[md_docs, blobs],
targets=[self.benchmarking],
chunk_size=chunk_size,
)

# def prechunk(self, number_splits: int): # pragma: no cover
# """
# Prechunk method to perform chunking by the key field
# """
# q = dict(self.query)
# keys = self.electronic_structure.newer_in(
# self.materials, criteria=q, exhaustive=True
# )
# N = ceil(len(keys) / number_splits)
# for split in grouper(keys, N):
# yield {"query": {self.materials.key: {"$in": list(split)}}}

def get_items(self, local_trajectories=False):
self.logger.info("Electrolyte builder started.")

hosts = self.md_docs.query(self.query, ["hosts"])
flow_ids = {doc["hosts"][-1] for doc in hosts} # top level flows

job_groups = []
for flow_id in flow_ids:
# the last item in hosts should be the top level workflow
host_match = {"$expr": {"$eq": [{"$arrayElemAt": ["$hosts", -1]}, flow_id]}}
job_groups.append(list(self.md_docs.query(criteria=host_match)))

items = []
for jobs in job_groups:
# find the job with the most calcs in the flow, presumably the last
len_calcs = [len(job["output"]["calcs_reversed"] or []) for job in jobs]
last_job = jobs[np.argmax(len_calcs)]

insert_blobs(
self.blobs, last_job["output"], include_traj=not local_trajectories
)

items.append(last_job)

return items

def get_items_from_directories(self):
# query will be ignored
return

def process_items(
self,
items,
local_trajectories: bool = False,
rebase_traj_path: Optional[tuple[Path, Path]] = None,
**benchmarking_kwargs,
):
self.logger.info(f"Processing {len(items)} materials for electrolyte builder.")

processed_items = []
for item in items:
# create task_doc
task_doc = OpenMMTaskDocument.parse_obj(item["output"])

# _tmp_file is needed bc traj_path may be a tmpfile and a
# reference must be in scope
traj_path, _tmp_file = resolve_traj_path(
task_doc, local_trajectories, rebase_traj_path
)

u = task_doc_to_universe(task_doc, traj_path)

benchmarking_doc = SolventBenchmarkingDoc.from_universe(
u,
temperature=task_doc.calcs_reversed[0].input.temperature,
density=task_doc.calcs_reversed[0].output.density[-1],
job_uuid=item["uuid"],
flow_uuid=item["hosts"][-1],
tags=task_doc.tags,
**benchmarking_kwargs,
)

del u

docs = {
"benchmarking": jsanitize(benchmarking_doc.model_dump()),
}

processed_items.append(docs)

return processed_items

def update_targets(self, items: List):
if len(items) > 0:
self.logger.info(f"Found {len(items)} electrolyte docs to update.")

calculations = [item["benchmarking"] for item in items]
self.benchmarking.update(calculations)

else:
self.logger.info("No items to update.")

def instantiate_universe(
self,
job_uuid: str,
traj_directory: Union[str, Path] = ".",
overwrite_local_traj: bool = True,
):
"""
Instantiate a MDAnalysis universe from a task document.

This is useful if you want to analyze a small number of systems
without running the whole build pipeline.

Args:
job_uuid: str
The UUID of the job.
traj_directory: str
Name of the DCD file to write.
overwrite_local_traj: bool
Whether to overwrite the local trajectory if it exists.
"""
return instantiate_universe(
self.md_docs, self.blobs, job_uuid, traj_directory, overwrite_local_traj
)
Loading
Loading