Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add GlacierMappingAlps dataset #2508

Open
wants to merge 18 commits into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 4 additions & 0 deletions docs/api/datasets.rst
Original file line number Diff line number Diff line change
Expand Up @@ -312,6 +312,10 @@ GID-15

.. autoclass:: GID15

DL4GAM Alps
^^^^^^^^^^^
.. autoclass:: DL4GAMAlps

HySpecNet-11k
^^^^^^^^^^^^^

Expand Down
1 change: 1 addition & 0 deletions docs/api/datasets/non_geo_datasets.csv
Original file line number Diff line number Diff line change
Expand Up @@ -21,6 +21,7 @@ Dataset,Task,Source,License,# Samples,# Classes,Size (px),Resolution (m),Bands
`Forest Damage`_,OD,Drone imagery,"CDLA-Permissive-1.0","1,543",4,"1,500x1,500",,RGB
`GeoNRW`_,S,Aerial,"CC-BY-4.0","7,783",11,"1,000x1,000",1,"RGB, DEM"
`GID-15`_,S,Gaofen-2,-,150,15,"6,800x7,200",3,RGB
`DL4GAM Alps`_,S,"Sentinel-2","CC-BY-4.0","2,251 or 11,440","2","256x256","10","MSI"
`HySpecNet-11k`_,-,EnMAP,CC0-1.0,11k,-,128,30,HSI
`IDTReeS`_,"OD,C",Aerial,"CC-BY-4.0",591,33,200x200,0.1--1,RGB
`Inria Aerial Image Labeling`_,S,Aerial,-,360,2,"5,000x5,000",0.3,RGB
Expand Down
4 changes: 4 additions & 0 deletions pyproject.toml
Original file line number Diff line number Diff line change
Expand Up @@ -87,6 +87,8 @@ datasets = [
"h5py>=3.6",
# laspy 2+ required for laspy.read
"laspy>=2",
# netcdf4 1.5.4+ required for xarray.open_dataset with engine="netcdf4"
"netcdf4>=1.5.4",
# opencv-python 4.5.4+ required for Python 3.10 wheels
"opencv-python>=4.5.4",
# pandas 2+ required for parquet extra
Expand All @@ -97,6 +99,8 @@ datasets = [
"scikit-image>=0.19",
# scipy 1.7.2+ required for Python 3.10 wheels
"scipy>=1.7.2",
# xarray 2023.9+ required for xarray.open_dataset
"xarray>=2023.9",
]
docs = [
# ipywidgets 7+ required by nbsphinx
Expand Down
2 changes: 2 additions & 0 deletions requirements/datasets.txt
dcodrut marked this conversation as resolved.
Show resolved Hide resolved
Original file line number Diff line number Diff line change
@@ -1,8 +1,10 @@
# datasets
h5py==3.12.1
laspy==2.5.4
netcdf4==1.7.2
opencv-python==4.11.0.86
pandas[parquet]==2.2.3
pycocotools==2.0.8
scikit-image==0.25.0
scipy==1.15.1
xarray==2024.11.0
143 changes: 143 additions & 0 deletions tests/data/dl4gam_alps/data.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,143 @@
#!/usr/bin/env python3

# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License.

import hashlib
import shutil
from pathlib import Path

import numpy as np
import pandas as pd
import xarray as xr

# define the patch size
PATCH_SIZE = 16

# create a random generator
rg = np.random.RandomState(42)


def create_dummy_sample(fp: str | Path) -> None:
# create the random S2 bands data; make the last two bands as binary masks
band_data = rg.randint(
low=0, high=10000, dtype=np.int16, size=(15, PATCH_SIZE, PATCH_SIZE)
)
band_data[-2:] = (band_data[-2:] > 5000).astype(np.int16)

data_dict = {
'band_data': {
'dims': ('band', 'y', 'x'),
'data': band_data,
'attrs': {
'long_name': [
'B1',
'B2',
'B3',
'B4',
'B5',
'B6',
'B7',
'B8',
'B8A',
'B9',
'B10',
'B11',
'B12',
'CLOUDLESS_MASK',
'FILL_MASK',
],
'_FillValue': -9999,
},
},
'mask_all_g_id': { # glaciers mask (with -1 for no-glacier and GLACIER_ID for glacier)
'dims': ('y', 'x'),
'data': rg.choice([-1, 8, 9, 30, 35], size=(PATCH_SIZE, PATCH_SIZE)).astype(
np.int32
),
'attrs': {'_FillValue': -1},
},
'mask_debris': {
'dims': ('y', 'x'),
'data': (rg.random((PATCH_SIZE, PATCH_SIZE)) > 0.5).astype(np.int8),
'attrs': {'_FillValue': -1},
},
}

# add the additional variables
for v in [
'dem',
'slope',
'aspect',
'planform_curvature',
'profile_curvature',
'terrain_ruggedness_index',
'dhdt',
'v',
]:
data_dict[v] = {
'dims': ('y', 'x'),
'data': (rg.random((PATCH_SIZE, PATCH_SIZE)) * 100).astype(np.float32),
'attrs': {'_FillValue': -9999},
}

# create the xarray dataset and save it
nc = xr.Dataset.from_dict(data_dict)
nc.to_netcdf(fp)


def create_splits_df(fp: str | Path) -> pd.DataFrame:
# create a dataframe with the splits for the 4 glaciers
splits_df = pd.DataFrame(
{
'entry_id': ['g_0008', 'g_0009', 'g_0030', 'g_0035'],
'split_1': ['fold_train', 'fold_train', 'fold_valid', 'fold_test'],
'split_2': ['fold_train', 'fold_valid', 'fold_train', 'fold_test'],
'split_3': ['fold_train', 'fold_valid', 'fold_test', 'fold_train'],
'split_4': ['fold_test', 'fold_valid', 'fold_train', 'fold_train'],
'split_5': ['fold_test', 'fold_train', 'fold_train', 'fold_valid'],
}
)

splits_df.to_csv(fp_splits, index=False)
print(f'Splits dataframe saved to {fp_splits}')
return splits_df


if __name__ == '__main__':
# prepare the paths
fp_splits = Path('splits.csv')
fp_dir_ds_small = Path('dataset_small')
fp_dir_ds_large = Path('dataset_large')

# cleanup
fp_splits.unlink(missing_ok=True)
fp_dir_ds_small.with_suffix('.tar.gz').unlink(missing_ok=True)
fp_dir_ds_large.with_suffix('.tar.gz').unlink(missing_ok=True)
shutil.rmtree(fp_dir_ds_small, ignore_errors=True)
shutil.rmtree(fp_dir_ds_large, ignore_errors=True)

# create the splits dataframe
split_df = create_splits_df(fp_splits)

# create the two datasets versions (small and large) with 1 and 2 patches per glacier, respectively
for fp_dir, num_patches in zip([fp_dir_ds_small, fp_dir_ds_large], [1, 2]):
for glacier_id in split_df.entry_id:
for i in range(num_patches):
fp = fp_dir / glacier_id / f'{glacier_id}_patch_{i}.nc'
fp.parent.mkdir(parents=True, exist_ok=True)
create_dummy_sample(fp=fp)

# archive the datasets
for fp_dir in [fp_dir_ds_small, fp_dir_ds_large]:
shutil.make_archive(str(fp_dir), 'gztar', fp_dir)

# compute checksums
for fp in [
fp_dir_ds_small.with_suffix('.tar.gz'),
fp_dir_ds_large.with_suffix('.tar.gz'),
fp_splits,
]:
with open(fp, 'rb') as f:
md5 = hashlib.md5(f.read()).hexdigest()
print(f'md5 for {fp}: {md5}')
Binary file added tests/data/dl4gam_alps/dataset_large.tar.gz
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file added tests/data/dl4gam_alps/dataset_small.tar.gz
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
5 changes: 5 additions & 0 deletions tests/data/dl4gam_alps/splits.csv
Original file line number Diff line number Diff line change
@@ -0,0 +1,5 @@
entry_id,split_1,split_2,split_3,split_4,split_5
g_0008,fold_train,fold_train,fold_train,fold_test,fold_test
g_0009,fold_train,fold_valid,fold_valid,fold_valid,fold_train
g_0030,fold_valid,fold_train,fold_test,fold_train,fold_train
g_0035,fold_test,fold_test,fold_train,fold_train,fold_valid
112 changes: 112 additions & 0 deletions tests/datasets/test_dl4gam_alps.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,112 @@
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License.

import shutil
from pathlib import Path

import matplotlib.pyplot as plt
import pytest
import torch
import torch.nn as nn
from _pytest.fixtures import SubRequest
from pytest import MonkeyPatch

from torchgeo.datasets import DatasetNotFoundError, DL4GAMAlps

pytest.importorskip('xarray', minversion='2023.9')
pytest.importorskip('netCDF4', minversion='1.5.4')


class TestDL4GAMAlps:
@pytest.fixture(
params=zip(
['train', 'val', 'test'],
[1, 3, 5],
['small', 'small', 'large'],
[DL4GAMAlps.rgb_bands, DL4GAMAlps.rgb_nir_swir_bands, DL4GAMAlps.all_bands],
[None, ['dem'], DL4GAMAlps.valid_extra_features],
)
)
def dataset(
self, monkeypatch: MonkeyPatch, tmp_path: Path, request: SubRequest
) -> DL4GAMAlps:
r_url = Path('tests', 'data', 'dl4gam_alps')
download_metadata = {
'dataset_small': {
'url': str(r_url / 'dataset_small.tar.gz'),
'checksum': '35f85360b943caa8661d9fb573b0f0b5',
},
'dataset_large': {
'url': str(r_url / 'dataset_large.tar.gz'),
'checksum': '636be5be35b8bd1e7771e9010503e4bc',
},
'splits_csv': {
'url': str(r_url / 'splits.csv'),
'checksum': '973367465c8ab322d0cf544a345b02f5',
},
}

monkeypatch.setattr(DL4GAMAlps, 'download_metadata', download_metadata)
root = tmp_path
split, cv_iter, version, bands, extra_features = request.param
transforms = nn.Identity()
return DL4GAMAlps(
root,
split,
cv_iter,
version,
bands,
extra_features,
transforms,
download=True,
checksum=True,
)

def test_getitem(self, dataset: DL4GAMAlps) -> None:
x = dataset[0]
assert isinstance(x, dict)

var_names = ['image', 'mask_glacier', 'mask_debris', 'mask_clouds_and_shadows']
if dataset.extra_features:
var_names += list(dataset.extra_features)
for v in var_names:
assert v in x
assert isinstance(x[v], torch.Tensor)

# check if all variables have the same spatial dimensions as the image
assert x['image'].shape[-2:] == x[v].shape[-2:]

# check the first dimension of the image tensor
assert x['image'].shape[0] == len(dataset.bands)

def test_len(self, dataset: DL4GAMAlps) -> None:
num_glaciers_per_fold = 2 if dataset.split == 'train' else 1
num_patches_per_glacier = 1 if dataset.version == 'small' else 2
assert len(dataset) == num_glaciers_per_fold * num_patches_per_glacier

def test_not_downloaded(self, tmp_path: Path) -> None:
with pytest.raises(DatasetNotFoundError, match='Dataset not found'):
DL4GAMAlps(tmp_path)

def test_already_downloaded_and_extracted(self, dataset: DL4GAMAlps) -> None:
DL4GAMAlps(root=dataset.root, download=False, version=dataset.version)

def test_already_downloaded_but_not_yet_extracted(self, tmp_path: Path) -> None:
fp_archive = Path('tests', 'data', 'dl4gam_alps', 'dataset_small.tar.gz')
shutil.copyfile(fp_archive, Path(str(tmp_path), fp_archive.name))
fp_splits = Path('tests', 'data', 'dl4gam_alps', 'splits.csv')
shutil.copyfile(fp_splits, Path(str(tmp_path), fp_splits.name))
DL4GAMAlps(root=str(tmp_path), download=False)

def test_invalid_split(self) -> None:
with pytest.raises(AssertionError):
DL4GAMAlps(split='foo')

def test_plot(self, dataset: DL4GAMAlps) -> None:
dataset.plot(dataset[0], suptitle='Test')
plt.close()

sample = dataset[0]
sample['prediction'] = torch.clone(sample['mask_glacier'])
dataset.plot(sample, suptitle='Test with prediction')
plt.close()
2 changes: 2 additions & 0 deletions torchgeo/datasets/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -36,6 +36,7 @@
from .deepglobelandcover import DeepGlobeLandCover
from .dfc2022 import DFC2022
from .digital_typhoon import DigitalTyphoon
from .dl4gam_alps import DL4GAMAlps
from .eddmaps import EDDMapS
from .enviroatlas import EnviroAtlas
from .errors import DatasetNotFoundError, DependencyNotFoundError, RGBBandsMissingError
Expand Down Expand Up @@ -201,6 +202,7 @@
'ChesapeakeWV',
'CloudCoverDetection',
'CropHarvest',
'DL4GAMAlps',
'DatasetNotFoundError',
'DeepGlobeLandCover',
'DependencyNotFoundError',
Expand Down
Loading
Loading