Skip to content

Commit

Permalink
Update Chapter_06.lean
Browse files Browse the repository at this point in the history
  • Loading branch information
pitmonticone committed Oct 20, 2024
1 parent f0f3802 commit 1b0065e
Showing 1 changed file with 3 additions and 9 deletions.
12 changes: 3 additions & 9 deletions FormalBook/Chapter_06.lean
Original file line number Diff line number Diff line change
Expand Up @@ -37,24 +37,20 @@ This is a TODO in `RingTheory.IntegralDomain`.

-- TODO: find the appropriate lemmas for use in the end of the proof...
example (i j : ℕ) (gj: 0 ≠ j) (h: i ∣ j): i ≤ j:= by
dsimp [Dvd.dvd] at h
cases' h with c h₀
cases' em (c = 0) with hc h
· by_contra
rw [hc] at h₀
simp only [mul_zero] at h₀
exact gj h₀.symm
· calc
i ≤ i*c := le_mul_of_le_of_one_le rfl.ge (zero_lt_iff.mpr h)
_ = j := h₀.symm

lemma le_abs_of_dvd {i j : ℤ} (gj: 0 ≠ j) (h: i ∣ j) : |i| ≤ |j| := by
dsimp [Dvd.dvd] at h
cases' h with c h₀
cases' em (c = 0) with hc h
· by_contra
rw [hc] at h₀
simp only [mul_zero] at h₀
rw [hc, mul_zero] at h₀
exact gj h₀.symm
· calc
|i| ≤ (|i|)*|c| := by exact le_mul_of_le_of_one_le' rfl.ge (Int.one_le_abs h) (abs_nonneg c) (abs_nonneg i)
Expand All @@ -69,9 +65,8 @@ lemma phi_dvd (n : ℕ) : phi n ∣ X ^ n - 1 := by
exact cyclotomic.dvd_X_pow_sub_one n ℤ

lemma phi_div_2 (n : ℕ) (k : ℕ) (_ : 1 ≠ k) (h₂ : k ∣ n) (h₃ : k < n) :
(X ^ k - 1) * (phi n)∣ (X ^ n - 1) := by
have h_proper_div : k ∈ n.properDivisors := Nat.mem_properDivisors.mpr ⟨h₂, h₃⟩
exact X_pow_sub_one_mul_cyclotomic_dvd_X_pow_sub_one_of_dvd ℤ h_proper_div
(X ^ k - 1) * (phi n)∣ (X ^ n - 1) :=
X_pow_sub_one_mul_cyclotomic_dvd_X_pow_sub_one_of_dvd ℤ (Nat.mem_properDivisors.mpr ⟨h₂, h₃⟩)


variable {R : Type _} [DecidableEq R] [DivisionRing R]
Expand Down Expand Up @@ -181,7 +176,6 @@ lemma orbit_stabilizer [Fintype R] (A: ConjClasses Rˣ) [Fintype A.carrier] :
convert this
rw [ConjAct.orbit_eq_carrier_conjClasses, (ConjClasses.exists_rep A|>.choose_spec)]


section wedderburn

theorem wedderburn (h: Fintype R): IsField R := by
Expand Down

0 comments on commit 1b0065e

Please sign in to comment.