forked from mlc-ai/mlc-llm
-
Notifications
You must be signed in to change notification settings - Fork 8
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
4 changed files
with
512 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,62 @@ | ||
import json | ||
|
||
import pytest | ||
from fastapi.testclient import TestClient | ||
from httpx_sse import connect_sse | ||
from mlc_serve.api import create_app | ||
from mlc_serve.engine import AsyncEngineConnector, InferenceEngine | ||
from mlc_serve.engine.dummy import DummyInferenceEngine | ||
|
||
|
||
@pytest.fixture | ||
def engine() -> InferenceEngine: | ||
return DummyInferenceEngine() | ||
|
||
|
||
@pytest.fixture | ||
def client(engine): | ||
connector = AsyncEngineConnector(engine, engine_wait_timeout=0.1) | ||
app = create_app(connector) | ||
with TestClient(app) as client: | ||
yield client | ||
|
||
|
||
@pytest.mark.timeout(3) | ||
def test_chat_completion(client): | ||
response = client.post( | ||
"/v1/chat/completions", | ||
json={"model": "test", "messages": "test prompt", "max_tokens": 10}, | ||
) | ||
assert response.status_code == 200 | ||
assert response.json()["choices"][0]["message"]["content"] == " test" * 10 | ||
|
||
|
||
@pytest.mark.timeout(3) | ||
def test_stream_chat_completion(client): | ||
data = [] | ||
with connect_sse( | ||
client, | ||
"POST", | ||
"/v1/chat/completions", | ||
json={ | ||
"model": "test", | ||
"messages": "test prompt", | ||
"max_tokens": 10, | ||
"stream": True, | ||
}, | ||
) as event_source: | ||
for sse in event_source.iter_sse(): | ||
data.append(sse.data) | ||
|
||
events = [json.loads(d) for d in data[:-1]] | ||
|
||
assert events[0]["choices"][0]["delta"]["role"] == "assistant" | ||
assert events[0]["choices"][0]["delta"]["content"] == "" | ||
|
||
assert all(e["choices"][0]["delta"]["content"] == " test" for e in events[1:-1]) | ||
|
||
assert events[-1]["choices"][0]["delta"] == {} | ||
assert events[-1]["choices"][0]["finish_reason"] == "length" | ||
|
||
assert data[-1] == "[DONE]" | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,24 @@ | ||
from mlc_serve.engine import ChatMessage, Request, SamplingParams, StoppingCriteria | ||
from mlc_serve.engine.dummy import DummyInferenceEngine | ||
|
||
|
||
def test_single_request(): | ||
engine = DummyInferenceEngine() | ||
|
||
request_id = "1" | ||
engine.add( | ||
[ | ||
Request( | ||
request_id=request_id, | ||
messages=[ChatMessage(role="user", content="test prompt")], | ||
sampling_params=SamplingParams(temperature=1), | ||
stopping_criteria=StoppingCriteria(max_tokens=20), | ||
), | ||
] | ||
) | ||
|
||
result = engine.step() | ||
|
||
assert result.outputs[0].request_id == request_id | ||
assert result.outputs[0].error is None | ||
assert len(result.outputs) == 1 |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,152 @@ | ||
import torch | ||
|
||
import argparse | ||
import json | ||
import random | ||
import os | ||
|
||
from mlc_llm import utils | ||
from mlc_serve.engine import ( | ||
Request, | ||
ChatMessage, | ||
DebugOptions, | ||
SamplingParams, | ||
StoppingCriteria, | ||
FinishReason, | ||
get_engine_config | ||
) | ||
from mlc_serve.engine.staging_engine import StagingInferenceEngine | ||
from mlc_serve.engine.sync_engine import SynchronousInferenceEngine | ||
from mlc_serve.model.paged_cache_model import HfTokenizerModule, PagedCacheModelModule | ||
|
||
def create_engine( | ||
model_artifact_path, | ||
use_staging_engine, | ||
max_num_batched_tokens, | ||
max_input_len, | ||
|
||
): | ||
engine_config = get_engine_config({ | ||
"use_staging_engine": use_staging_engine, | ||
"max_num_batched_tokens": max_num_batched_tokens, | ||
"max_input_len": max_input_len, | ||
# Use defaults for "min_decode_steps", "max_decode_steps", "prompt_allocate_ratio" | ||
}) | ||
|
||
if use_staging_engine: | ||
engine = StagingInferenceEngine( | ||
tokenizer_module=HfTokenizerModule(model_artifact_path), | ||
model_module_loader=PagedCacheModelModule, | ||
model_module_loader_kwargs={ | ||
"model_artifact_path": model_artifact_path, | ||
"engine_config": engine_config, | ||
}, | ||
) | ||
engine.start() | ||
else: | ||
engine = SynchronousInferenceEngine( | ||
PagedCacheModelModule( | ||
model_artifact_path = model_artifact_path, | ||
engine_config = engine_config, | ||
)) | ||
return engine | ||
|
||
def create_request(idx, prompt, temp, max_tokens, stop, ignore_eos): | ||
return Request( | ||
request_id = str(idx), | ||
messages = [ChatMessage(role="user", content=prompt)], | ||
sampling_params = SamplingParams( | ||
temperature=0.0, | ||
), | ||
stopping_criteria = StoppingCriteria( | ||
max_tokens=max_tokens, | ||
stop_sequences=stop | ||
), | ||
debug_options = DebugOptions(ignore_eos = ignore_eos) | ||
) | ||
|
||
def test_max_tokens( | ||
model_artifact_path, | ||
use_staging_engine, | ||
max_num_batched_tokens=2560, | ||
max_input_len=2560, | ||
num_requests=5, | ||
ignore_eos=False | ||
): | ||
prompt = "Write a merge sort program in Python." | ||
engine = create_engine( | ||
model_artifact_path, | ||
use_staging_engine, | ||
max_num_batched_tokens, | ||
max_input_len, | ||
) | ||
|
||
requests = [create_request(idx=str(n-1), prompt=prompt, temp=0, max_tokens=n, stop=None, ignore_eos=ignore_eos) for n in range(1, num_requests)] | ||
engine.add(requests) | ||
|
||
generated = ["" for _ in range(num_requests)] | ||
|
||
while engine.has_pending_requests(): | ||
results = engine.step() | ||
for res in results.outputs: | ||
assert len(res.sequences) == 1 | ||
seq = res.sequences[0] | ||
|
||
if seq.is_finished: | ||
assert seq.num_generated_tokens == requests[int(res.request_id)].stopping_criteria.max_tokens | ||
assert seq.finish_reason == FinishReason.Length | ||
else: | ||
generated[int(res.request_id)] += seq.delta | ||
|
||
if use_staging_engine: | ||
engine.stop() | ||
|
||
|
||
def test_ignore_eos( | ||
model_artifact_path, | ||
use_staging_engine, | ||
max_num_batched_tokens=2560, | ||
max_input_len=2560, | ||
num_requests=5, | ||
): | ||
prompt = "hi" | ||
engine = create_engine( | ||
model_artifact_path, | ||
use_staging_engine, | ||
max_num_batched_tokens, | ||
max_input_len, | ||
) | ||
s = 113 | ||
requests = [create_request(idx=str(n-s), prompt=prompt, temp=0, max_tokens=n, stop=None, ignore_eos=True) for n in range(s, s+num_requests)] | ||
engine.add(requests) | ||
|
||
generated = ["" for _ in range(num_requests)] | ||
|
||
while engine.has_pending_requests(): | ||
results = engine.step() | ||
for res in results.outputs: | ||
assert len(res.sequences) == 1 | ||
seq = res.sequences[0] | ||
|
||
if seq.is_finished: | ||
assert seq.num_generated_tokens == requests[int(res.request_id)].stopping_criteria.max_tokens | ||
assert seq.finish_reason == FinishReason.Length | ||
else: | ||
generated[int(res.request_id)] += seq.delta | ||
|
||
if use_staging_engine: | ||
engine.stop() | ||
|
||
|
||
if __name__ == "__main__": | ||
parser = argparse.ArgumentParser() | ||
args = parser.parse_args() | ||
parser.add_argument("--local-id", type=str, required=True) | ||
parser.add_argument("--artifact-path", type=str, default="../../../dist") | ||
args = parser.parse_args() | ||
model_artifact_path = os.path.join(args.artifact_path, args.local_id) | ||
|
||
test_max_tokens(model_artifact_path, use_staging_engine=True) | ||
test_max_tokens(model_artifact_path, use_staging_engine=False) | ||
test_ignore_eos(model_artifact_path, use_staging_engine=True) | ||
test_ignore_eos(model_artifact_path, use_staging_engine=False) |
Oops, something went wrong.