-
Notifications
You must be signed in to change notification settings - Fork 19
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
* make gitignore more strict * update api files Co-authored-by: Kai Waldrant <[email protected]> * create separate file for pretrained model * add train component * clean up resources * wip components * wip refactor * fix issues with training component * make input_train optional in prediction methods * clean up predict method * fix wf * clean up train * add helper test script * update configs * add to wf * always store ymean.npy * add shmsize to simplemlp * Update src/tasks/predict_modality/methods/simple_mlp/train/script.py * bigger shm * Add nextflow workaround * lower cpu label --------- Co-authored-by: Kai Waldrant <[email protected]>
- Loading branch information
1 parent
7cea6a5
commit 41fc027
Showing
16 changed files
with
580 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -53,4 +53,15 @@ authors: | |
roles: [ contributor ] | ||
info: | ||
email: [email protected] | ||
github: nonztalk | ||
github: nonztalk | ||
- name: Xueer Chen | ||
roles: [ contributor ] | ||
info: | ||
github: xuerchen | ||
email: [email protected] | ||
- name: Jiwei Liu | ||
roles: [ contributor ] | ||
info: | ||
github: daxiongshu | ||
email: [email protected] | ||
orcid: "0000-0002-8799-9763" |
21 changes: 21 additions & 0 deletions
21
src/tasks/predict_modality/methods/simple_mlp/predict/config.vsh.yaml
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,21 @@ | ||
__merge__: ../../../api/comp_method_predict.yaml | ||
functionality: | ||
name: simplemlp_predict | ||
resources: | ||
- type: python_script | ||
path: script.py | ||
- path: ../resources/ | ||
platforms: | ||
- type: docker | ||
# image: pytorch/pytorch:1.9.0-cuda11.1-cudnn8-runtime | ||
image: ghcr.io/openproblems-bio/base_pytorch_nvidia:1.0.4 | ||
# run_args: ["--gpus all --ipc=host"] | ||
setup: | ||
- type: python | ||
pypi: | ||
- scikit-learn | ||
- scanpy | ||
- pytorch-lightning | ||
- type: nextflow | ||
directives: | ||
label: [highmem, hightime, midcpu, gpu, highsharedmem] |
104 changes: 104 additions & 0 deletions
104
src/tasks/predict_modality/methods/simple_mlp/predict/script.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,104 @@ | ||
from glob import glob | ||
import sys | ||
import numpy as np | ||
from scipy.sparse import csc_matrix | ||
import anndata as ad | ||
import torch | ||
from torch.utils.data import TensorDataset,DataLoader | ||
|
||
## VIASH START | ||
par = { | ||
'input_train_mod1': 'resources_test/predict_modality/openproblems_neurips2021/bmmc_multiome/swap/train_mod1.h5ad', | ||
'input_train_mod2': 'resources_test/predict_modality/openproblems_neurips2021/bmmc_multiome/swap/train_mod2.h5ad', | ||
'input_test_mod1': 'resources_test/predict_modality/openproblems_neurips2021/bmmc_multiome/swap/test_mod1.h5ad', | ||
'input_model': 'output/model', | ||
'output': 'output/prediction' | ||
} | ||
meta = { | ||
'resources_dir': 'src/tasks/predict_modality/methods/simple_mlp', | ||
'cpus': 10 | ||
} | ||
## VIASH END | ||
|
||
resources_dir = f"{meta['resources_dir']}/resources" | ||
sys.path.append(resources_dir) | ||
from models import MLP | ||
import utils | ||
|
||
def _predict(model,dl): | ||
model = model.cuda() | ||
model.eval() | ||
yps = [] | ||
for x in dl: | ||
with torch.no_grad(): | ||
yp = model(x[0].cuda()) | ||
yps.append(yp.detach().cpu().numpy()) | ||
yp = np.vstack(yps) | ||
return yp | ||
|
||
|
||
print('Load data', flush=True) | ||
input_train_mod2 = ad.read_h5ad(par['input_train_mod2']) | ||
input_test_mod1 = ad.read_h5ad(par['input_test_mod1']) | ||
|
||
# determine variables | ||
mod_1 = input_test_mod1.uns['modality'] | ||
mod_2 = input_train_mod2.uns['modality'] | ||
|
||
task = f'{mod_1}2{mod_2}' | ||
|
||
print('Load ymean', flush=True) | ||
ymean_path = f"{par['input_model']}/{task}_ymean.npy" | ||
ymean = np.load(ymean_path) | ||
|
||
print('Start predict', flush=True) | ||
if task == 'GEX2ATAC': | ||
y_pred = ymean*np.ones([input_test_mod1.n_obs, input_test_mod1.n_vars]) | ||
else: | ||
folds = [0, 1, 2] | ||
|
||
ymean = torch.from_numpy(ymean).float() | ||
yaml_path=f"{resources_dir}/yaml/mlp_{task}.yaml" | ||
config = utils.load_yaml(yaml_path) | ||
X = input_test_mod1.layers["normalized"].toarray() | ||
X = torch.from_numpy(X).float() | ||
|
||
te_ds = TensorDataset(X) | ||
|
||
yp = 0 | ||
for fold in folds: | ||
# load_path = f"{par['input_model']}/{task}_fold_{fold}/version_0/checkpoints/*" | ||
load_path = f"{par['input_model']}/{task}_fold_{fold}/**.ckpt" | ||
print(load_path) | ||
ckpt = glob(load_path)[0] | ||
model_inf = MLP.load_from_checkpoint( | ||
ckpt, | ||
in_dim=X.shape[1], | ||
out_dim=input_test_mod1.n_vars, | ||
ymean=ymean, | ||
config=config | ||
) | ||
te_loader = DataLoader( | ||
te_ds, | ||
batch_size=config.batch_size, | ||
num_workers=0, | ||
shuffle=False, | ||
drop_last=False | ||
) | ||
yp = yp + _predict(model_inf, te_loader) | ||
|
||
y_pred = yp/len(folds) | ||
|
||
y_pred = csc_matrix(y_pred) | ||
|
||
adata = ad.AnnData( | ||
layers={"normalized": y_pred}, | ||
shape=y_pred.shape, | ||
uns={ | ||
'dataset_id': input_test_mod1.uns['dataset_id'], | ||
'method_id': meta['functionality_name'], | ||
}, | ||
) | ||
|
||
print('Write data', flush=True) | ||
adata.write_h5ad(par['output'], compression = "gzip") |
68 changes: 68 additions & 0 deletions
68
src/tasks/predict_modality/methods/simple_mlp/resources/models.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,68 @@ | ||
import torch | ||
import pytorch_lightning as pl | ||
import torch.nn as nn | ||
import torch.nn.functional as F | ||
|
||
class MLP(pl.LightningModule): | ||
def __init__(self,in_dim,out_dim,ymean,config): | ||
super(MLP, self).__init__() | ||
self.ymean = ymean.cuda() | ||
H1 = config.H1 | ||
H2 = config.H2 | ||
p = config.dropout | ||
self.config = config | ||
self.fc1 = nn.Linear(in_dim, H1) | ||
self.fc2 = nn.Linear(H1,H2) | ||
self.fc3 = nn.Linear(H1+H2, out_dim) | ||
self.dp2 = nn.Dropout(p=p) | ||
|
||
def forward(self, x): | ||
x0 = x | ||
x1 = F.relu(self.fc1(x)) | ||
x1 = self.dp2(x1) | ||
x = F.relu(self.fc2(x1)) | ||
x = torch.cat([x,x1],dim=1) | ||
x = self.fc3(x) | ||
x = self.apply_mask(x) | ||
return x | ||
|
||
def apply_mask(self,yp): | ||
tmp = torch.ones_like(yp).float()*self.ymean | ||
mask = tmp<self.config.threshold | ||
mask = mask.float() | ||
return yp*(1-mask) + tmp*mask | ||
|
||
def training_step(self, batch, batch_nb): | ||
x,y = batch | ||
yp = self(x) | ||
criterion = nn.MSELoss() | ||
loss = criterion(yp, y) | ||
self.log('train_loss', loss, prog_bar=True) | ||
return loss | ||
|
||
def validation_step(self, batch, batch_idx): | ||
x,y = batch | ||
yp = self(x) | ||
criterion = nn.MSELoss() | ||
loss = criterion(yp, y) | ||
self.log('valid_RMSE', loss**0.5, prog_bar=True) | ||
return loss | ||
|
||
def predict_step(self, batch, batch_idx): | ||
if len(batch) == 2: | ||
x,_ = batch | ||
else: | ||
x = batch | ||
return self(x) | ||
|
||
def configure_optimizers(self): | ||
lr = self.config.lr | ||
wd = float(self.config.wd) | ||
adam = torch.optim.Adam(self.parameters(), lr=lr, weight_decay=wd) | ||
if self.config.lr_schedule == 'adam': | ||
return adam | ||
elif self.config.lr_schedule == 'adam_cosin': | ||
slr = torch.optim.lr_scheduler.CosineAnnealingLR(adam, self.config.epochs) | ||
return [adam], [slr] | ||
else: | ||
assert 0 |
37 changes: 37 additions & 0 deletions
37
src/tasks/predict_modality/methods/simple_mlp/resources/utils.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,37 @@ | ||
import yaml | ||
from collections import namedtuple | ||
|
||
|
||
def to_site_donor(data): | ||
df = data.obs['batch'].copy().to_frame().reset_index() | ||
df.columns = ['index','batch'] | ||
df['site'] = df['batch'].apply(lambda x: x[:2]) | ||
df['donor'] = df['batch'].apply(lambda x: x[2:]) | ||
return df | ||
|
||
|
||
def split(tr1, tr2, fold): | ||
df = to_site_donor(tr1) | ||
mask = df['site'] == f's{fold+1}' | ||
maskr = ~mask | ||
|
||
Xt = tr1[mask].layers["normalized"].toarray() | ||
X = tr1[maskr].layers["normalized"].toarray() | ||
|
||
yt = tr2[mask].layers["normalized"].toarray() | ||
y = tr2[maskr].layers["normalized"].toarray() | ||
|
||
print(f"{X.shape}, {y.shape}, {Xt.shape}, {yt.shape}") | ||
|
||
return X,y,Xt,yt | ||
|
||
|
||
def load_yaml(path): | ||
with open(path) as f: | ||
x = yaml.safe_load(f) | ||
res = {} | ||
for i in x: | ||
res[i] = x[i]['value'] | ||
config = namedtuple('Config', res.keys())(**res) | ||
print(config) | ||
return config |
28 changes: 28 additions & 0 deletions
28
src/tasks/predict_modality/methods/simple_mlp/resources/yaml/mlp_ADT2GEX.yaml
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,28 @@ | ||
# sample config defaults file | ||
epochs: | ||
desc: Number of epochs to train over | ||
value: 10 | ||
batch_size: | ||
desc: Size of each mini-batch | ||
value: 512 | ||
H1: | ||
desc: Number of hidden neurons in 1st layer of MLP | ||
value: 256 | ||
H2: | ||
desc: Number of hidden neurons in 2nd layer of MLP | ||
value: 128 | ||
dropout: | ||
desc: probs of zeroing values | ||
value: 0 | ||
lr: | ||
desc: learning rate | ||
value: 0.001 | ||
wd: | ||
desc: weight decay | ||
value: 1e-5 | ||
threshold: | ||
desc: threshold to set values to zero | ||
value: 0 | ||
lr_schedule: | ||
desc: learning rate scheduler | ||
value: adam |
28 changes: 28 additions & 0 deletions
28
src/tasks/predict_modality/methods/simple_mlp/resources/yaml/mlp_ATAC2GEX.yaml
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,28 @@ | ||
# sample config defaults file | ||
epochs: | ||
desc: Number of epochs to train over | ||
value: 10 | ||
batch_size: | ||
desc: Size of each mini-batch | ||
value: 512 | ||
H1: | ||
desc: Number of hidden neurons in 1st layer of MLP | ||
value: 256 | ||
H2: | ||
desc: Number of hidden neurons in 2nd layer of MLP | ||
value: 128 | ||
dropout: | ||
desc: probs of zeroing values | ||
value: 0.5 | ||
lr: | ||
desc: learning rate | ||
value: 0.001 | ||
wd: | ||
desc: weight decay | ||
value: 1e-5 | ||
threshold: | ||
desc: threshold to set values to zero | ||
value: 0 | ||
lr_schedule: | ||
desc: learning rate scheduler | ||
value: adam |
28 changes: 28 additions & 0 deletions
28
src/tasks/predict_modality/methods/simple_mlp/resources/yaml/mlp_GEX2ADT.yaml
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,28 @@ | ||
# sample config defaults file | ||
epochs: | ||
desc: Number of epochs to train over | ||
value: 10 | ||
batch_size: | ||
desc: Size of each mini-batch | ||
value: 512 | ||
H1: | ||
desc: Number of hidden neurons in 1st layer of MLP | ||
value: 1024 | ||
H2: | ||
desc: Number of hidden neurons in 2nd layer of MLP | ||
value: 512 | ||
dropout: | ||
desc: probs of zeroing values | ||
value: 0 | ||
lr: | ||
desc: learning rate | ||
value: 0.001 | ||
wd: | ||
desc: weight decay | ||
value: 1e-5 | ||
threshold: | ||
desc: threshold to set values to zero | ||
value: 0.05 | ||
lr_schedule: | ||
desc: learning rate scheduler | ||
value: adam_cosin |
26 changes: 26 additions & 0 deletions
26
src/tasks/predict_modality/methods/simple_mlp/run/config.vsh.yaml
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,26 @@ | ||
__merge__: ../../../api/comp_method_train.yaml | ||
functionality: | ||
name: simplemlp | ||
info: | ||
label: Simple MLP | ||
summary: Ensemble of MLPs trained on different sites (team AXX) | ||
description: | | ||
This folder contains the AXX solution to the OpenProblems-NeurIPS2021 Single-Cell Multimodal Data Integration. | ||
Team took the 4th place of the modality prediction task in terms of overall ranking of 4 subtasks: namely GEX | ||
to ADT, ADT to GEX, GEX to ATAC and ATAC to GEX. Specifically, our methods ranked 3rd in GEX to ATAC and 4th | ||
in GEX to ADT. More details about the task can be found in the | ||
[competition webpage](https://openproblems.bio/events/2021-09_neurips/documentation/about_tasks/task1_modality_prediction). | ||
documentation_url: https://github.com/openproblems-bio/neurips2021_multimodal_topmethods/tree/main/src/predict_modality/methods/AXX | ||
repository_url: https://github.com/openproblems-bio/neurips2021_multimodal_topmethods/tree/main/src/predict_modality/methods/AXX | ||
reference: lance2022multimodal | ||
preferred_normalization: log_cp10k | ||
competition_submission_id: 170812 | ||
resources: | ||
- path: main.nf | ||
type: nextflow_script | ||
entrypoint: run_wf | ||
dependencies: | ||
- name: predict_modality/methods/simplemlp_train | ||
- name: predict_modality/methods/simplemlp_predict | ||
platforms: | ||
- type: nextflow |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,21 @@ | ||
workflow run_wf { | ||
take: input_ch | ||
main: | ||
output_ch = input_ch | ||
|
||
| simplemlp_train.run( | ||
fromState: ["input_train_mod1", "input_train_mod2"], | ||
toState: ["input_model": "output"] | ||
) | ||
|
||
| simplemlp_predict.run( | ||
fromState: ["input_train_mod2", "input_test_mod1", "input_model", "input_transform"], | ||
toState: ["output": "output"] | ||
) | ||
|
||
| map { tup -> | ||
[tup[0], [output: tup[1].output]] | ||
} | ||
|
||
emit: output_ch | ||
} |
Oops, something went wrong.