-
Notifications
You must be signed in to change notification settings - Fork 13
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
321 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,321 @@ | ||
import re | ||
from unittest.mock import patch | ||
|
||
import pytest | ||
import structlog | ||
|
||
from cohortextractor import StudyDefinition, codelist, patients | ||
from cohortextractor.cohortextractor import generate_cohort, generate_measures | ||
from tests.test_tpp_backend import ( # noqa: F401; We need to import these for setup for the tests that require a tpp database; | ||
set_database_url, | ||
setup_function, | ||
setup_module, | ||
teardown_module, | ||
) | ||
|
||
|
||
@pytest.fixture(name="logger") | ||
def fixture_logger(): | ||
"""Modify `capture_logs` to keep reference to `processors` list intact, | ||
in order to also modify bound loggers which get the list assigned by reference. | ||
See https://github.com/hynek/structlog/issues/408 | ||
""" | ||
cap = structlog.testing.LogCapture() | ||
# Modify `_Configuration.default_processors` set via `configure` but always keep | ||
# the list instance intact to not break references held by bound loggers. | ||
processors = structlog.get_config()["processors"] | ||
old_processors = processors[:] # copy original processors | ||
try: | ||
processors.clear() # clear processors list | ||
processors.append(cap) # append the LogCapture processor for testing | ||
structlog.configure(processors=processors) | ||
yield cap | ||
finally: | ||
processors.clear() # remove LogCapture | ||
processors.extend(old_processors) # restore original processors | ||
structlog.configure(processors=processors) | ||
|
||
|
||
def get_stats_logs(log_output): | ||
return [ | ||
{k: v for k, v in log_item.items() if k not in ["event", "log_level"]} | ||
for log_item in log_output | ||
if isinstance(log_item["event"], str) | ||
and log_item["event"] == "cohortextractor-stats" | ||
] | ||
|
||
|
||
def get_timing_logs(log_output): | ||
return [log_entry for log_entry in log_output.entries if "target" in log_entry] | ||
|
||
|
||
def test_study_definition_initial_stats_logging(logger): | ||
StudyDefinition( | ||
default_expectations={ | ||
"rate": "exponential_increase", | ||
"incidence": 0.2, | ||
"date": {"earliest": "1900-01-01", "latest": "today"}, | ||
}, | ||
population=patients.all(), | ||
event_date_1=patients.with_these_clinical_events( | ||
codelist(["A"], system="ctv3"), | ||
returning="date", | ||
date_format="YYYY-MM-DD", | ||
), | ||
event_min_date=patients.minimum_of( | ||
"event_date_1", | ||
event_date_2=patients.with_these_clinical_events( | ||
codelist(["B", "C"], system="ctv3"), | ||
returning="date", | ||
date_format="YYYY-MM-DD", | ||
), | ||
), | ||
) | ||
assert get_stats_logs(logger.entries) == [ | ||
# output columns include patient_id, and the 4 variables defined in the | ||
# study defniiton, including event_date_2, which is defined as a parameter to | ||
# event_min_date | ||
# tables - Patient, temp event table for each codelist | ||
{"output_column_count": 5, "table_count": 3, "table_joins_count": 2}, | ||
# variable_count is a count of the top-level variables defined in the study def (i.e. not event_date_2) | ||
{"variable_count": 4}, | ||
# 2 variables use a codelist (event_date_1, and the nested event_date_2) | ||
{"variables_using_codelist_count": 2}, | ||
# for each variable using a codelist, we log the size of the codelist | ||
{"variable_using_codelist": "event_date_1", "codelist_size": 1}, | ||
{"variable_using_codelist": "event_date_2", "codelist_size": 2}, | ||
] | ||
|
||
|
||
def test_stats_logging_tpp_backend(logger): | ||
study = StudyDefinition( | ||
population=patients.all(), | ||
event=patients.with_these_clinical_events(codelist(["A"], "snomed")), | ||
) | ||
study.to_dicts() | ||
|
||
# initial stats | ||
expected_initial_study_def_logs = [ | ||
# output columns include patient_id, and the 2 variables defined in the | ||
# study defniiton | ||
# tables - Patient, temp event table for codelist | ||
{"output_column_count": 3, "table_count": 2, "table_joins_count": 1}, | ||
{"variable_count": 2}, | ||
{"variables_using_codelist_count": 1}, | ||
{"variable_using_codelist": "event", "codelist_size": 1}, | ||
] | ||
|
||
# timing stats | ||
expected_timing_targets = [ | ||
"Uploading codelist for event", | ||
"INSERT INTO #tmp1_event_codelist (code, category) ...", | ||
"Query for event", | ||
"Query for population", | ||
"Join all columns for final output", | ||
] | ||
|
||
assert_stats_logs(logger, expected_initial_study_def_logs, expected_timing_targets) | ||
|
||
|
||
@patch("cohortextractor.cohortextractor.preflight_generation_check") | ||
@patch( | ||
"cohortextractor.cohortextractor.list_study_definitions", | ||
return_value=[("study_definition", "")], | ||
) | ||
@patch("cohortextractor.cohortextractor.load_study_definition") | ||
@pytest.mark.parametrize( | ||
"output_format,write_to_file_log", | ||
[ | ||
("csv", "write_rows_to_csv"), | ||
("dta", "Create df and write dataframe_to_file"), | ||
], | ||
) | ||
def test_stats_logging_generate_cohort( | ||
mock_load, | ||
_mock_list, | ||
_mock_check, | ||
tmp_path, | ||
logger, | ||
output_format, | ||
write_to_file_log, | ||
): | ||
mock_load.return_value = StudyDefinition( | ||
default_expectations={ | ||
"date": {"earliest": "1900-01-01", "latest": "today"}, | ||
}, | ||
population=patients.all(), | ||
sex=patients.sex(), | ||
) | ||
|
||
generate_cohort( | ||
output_dir=tmp_path, | ||
expectations_population=None, | ||
dummy_data_file=None, | ||
output_format=output_format, | ||
) | ||
|
||
# initial stats | ||
expected_initial_study_def_logs = [ | ||
# these 3 are logged from StudyDefinition instantiation | ||
# patient_id, population, sex - all from patient table, but we make one temp # table per variable | ||
{"output_column_count": 3, "table_count": 2, "table_joins_count": 1}, | ||
{"variable_count": 2}, # population, sex | ||
{"variables_using_codelist_count": 0}, | ||
# index_date_count logged from generate_cohort | ||
{"index_date_count": 0}, | ||
] | ||
|
||
expected_timing_targets = [ | ||
# logs in tpp_backend during query execution | ||
"Query for sex", | ||
"Query for population", | ||
# logs specifically from study.to_file | ||
"Writing results into #final_output", | ||
"CREATE INDEX ix_patient_id ON #final_output (patie...", | ||
f"{write_to_file_log} {tmp_path}/input.{output_format}", | ||
"Deleting '#final_output'", | ||
# logging the overall timing for the cohort generation | ||
"generate_cohort for study_definition", | ||
"generate_cohort for study_definition (all index dates)", | ||
] | ||
|
||
assert_stats_logs(logger, expected_initial_study_def_logs, expected_timing_targets) | ||
|
||
|
||
@patch("cohortextractor.cohortextractor.preflight_generation_check") | ||
@patch( | ||
"cohortextractor.cohortextractor.list_study_definitions", | ||
return_value=[("study_definition_test", "_test")], | ||
) | ||
@patch("cohortextractor.cohortextractor.load_study_definition") | ||
def test_stats_logging_generate_cohort_with_index_dates( | ||
mock_load, _mock_list, _mock_check, logger, tmp_path | ||
): | ||
mock_load.return_value = StudyDefinition( | ||
default_expectations={ | ||
"date": {"earliest": "1900-01-01", "latest": "today"}, | ||
}, | ||
population=patients.all(), | ||
sex=patients.sex(), | ||
) | ||
|
||
generate_cohort( | ||
output_dir=tmp_path, | ||
expectations_population=None, | ||
dummy_data_file=None, | ||
index_date_range="2020-01-01 to 2020-03-01 by month", | ||
) | ||
|
||
expected_index_dates = ["2020-03-01", "2020-02-01", "2020-01-01"] | ||
|
||
# initial stats | ||
expected_initial_study_def_logs = [ | ||
# these 3 are logged from StudyDefinition instantiation | ||
{"variable_count": 2}, # population, sex | ||
{"variables_using_codelist_count": 0}, | ||
# index_date_count logged from generate_cohort | ||
{"index_date_count": 3}, | ||
{"min_index_date": "2020-01-01", "max_index_date": "2020-03-01"}, | ||
# output_column/table/joins_count is logged in tpp_backend on backend instantiation so it's repeated for each index date | ||
*[{"output_column_count": 3, "table_count": 2, "table_joins_count": 1}] * 4, | ||
*[ | ||
{"resetting_backend_index_date": ix_date} | ||
for ix_date in expected_index_dates | ||
], | ||
] | ||
|
||
index_date_timing_logs = [] | ||
for index_date in expected_index_dates: | ||
index_date_timing_logs.extend( | ||
[ | ||
# logs in tpp_backend during query execution | ||
"Query for sex", | ||
"Query for population", | ||
# logs specifically from study.to_file | ||
"Writing results into #final_output", | ||
"CREATE INDEX ix_patient_id ON #final_output (patie...", | ||
f"write_rows_to_csv {tmp_path}/input_test_{index_date}.csv", | ||
"Deleting '#final_output'", | ||
# logging the overall timing for the cohort generation | ||
f"generate_cohort for study_definition_test at {index_date}", | ||
] | ||
) | ||
|
||
expected_timing_targets = [ | ||
*index_date_timing_logs, | ||
"generate_cohort for study_definition_test (all index dates)", | ||
] | ||
assert_stats_logs(logger, expected_initial_study_def_logs, expected_timing_targets) | ||
|
||
|
||
@patch("cohortextractor.cohortextractor.preflight_generation_check") | ||
@patch( | ||
"cohortextractor.cohortextractor.list_study_definitions", | ||
return_value=[("study_definition", "")], | ||
) | ||
@patch("cohortextractor.cohortextractor.load_study_definition") | ||
def test_stats_logging_generate_measures( | ||
mock_load, _mock_list, _mock_check, logger, tmp_path | ||
): | ||
import csv | ||
|
||
from cohortextractor.measure import Measure | ||
|
||
measures = [ | ||
Measure( | ||
id="has_code", | ||
numerator="has_code", | ||
denominator="population", | ||
), | ||
Measure( | ||
id="has_code_one_group", | ||
numerator="has_code", | ||
denominator="population", | ||
group_by="population", | ||
), | ||
] | ||
|
||
mock_load.return_value = measures | ||
|
||
# set up an expected input file | ||
with open(tmp_path / "input_2020-01-01.csv", "w") as output_file: | ||
writer = csv.writer(output_file) | ||
writer.writerow(["patient_id", "has_code"]) | ||
writer.writerow([1, 1]) | ||
writer.writerow([2, 1]) | ||
writer.writerow([3, 1]) | ||
writer.writerow([4, 0]) | ||
|
||
generate_measures(output_dir=tmp_path) | ||
|
||
stats_logs = get_stats_logs(logger.entries) | ||
assert len(stats_logs) == 2 | ||
assert stats_logs[0] == {"measures_count": 2} | ||
assert "execution_time" in stats_logs[1] | ||
assert ( | ||
stats_logs[1]["target"] | ||
== f"generate_measures for {tmp_path}/input_2020-01-01.csv" | ||
) | ||
|
||
|
||
def assert_stats_logs( | ||
log_output, expected_initial_study_def_logs, expected_timing_targets | ||
): | ||
all_stats_logs = get_stats_logs(log_output.entries) | ||
for log_params in expected_initial_study_def_logs: | ||
assert log_params in all_stats_logs | ||
|
||
timing_logs = get_timing_logs(log_output) | ||
assert len(timing_logs) == len(expected_timing_targets), timing_logs | ||
|
||
for i, timing_log in enumerate(timing_logs): | ||
assert timing_log["target"] == expected_timing_targets[i] | ||
assert re.match(r"\d:\d{2}:\d{2}.\d{6}", timing_log["execution_time"]).group( | ||
0 | ||
), timing_log["execution_time"] | ||
|
||
# Make sure we've checked all the stats logs | ||
assert len(all_stats_logs) == len(expected_initial_study_def_logs) + len( | ||
timing_logs | ||
) |