Skip to content
forked from mklissa/phi_gcn

Combining Reward Propagation using GCN and ICM

Notifications You must be signed in to change notification settings

rdh1115/phi_gcn

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

61 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Combining Reward Propagation using Graph Convolutional Networks with ICM

We combined Reward Propagation using Graph Convolutional Networks which was presented as a spotlight at NeurIPS 2020 with the Intrinsic Curiosity Module [Curiosity-driven Exploration by Self-supervised Prediction] (https://arxiv.org/pdf/1705.05363.pdf).

Installation

# PyTorch
conda install pytorch torchvision -c soumith

# Other requirements
pip install -r requirements.txt
pip install mujoco-py==2.0.2.2 #optional

#Installing PyGCN
python setup_gcn.py install

Usage

Atari

To launch a run on one of the Atari games, use the following command:

python control/main.py --num-frames 10000000 --algo ppo --use-gae --lr 2.5e-4 --clip-param 0.1 --value-loss-coef 0.5 --num-processes 8 --num-steps 128 --num-mini-batch 4  --gcn_alpha 0.9  --log-interval 1 --env-name ZaxxonNoFrameskip-v4 --seed 0 --entropy-coef 0.01  --use-logger --folder results

MuJoCo

To launch a run on one of the delayed MuJoCo environments, use the following command:

python control/main.py --num-frames 3000000   --algo ppo --use-gae --lr 3e-4 --clip-param 0.1 --value-loss-coef 0.5 --num-processes 1 --ppo-epoch 10 --num-steps 2048 --num-mini-batch 32 --gcn_alpha 0.6 --log-interval 1 --env-name Walker2d-v2 --seed 0 --entropy-coef 0.0  --use-logger --folder results --reward_freq 20

About

Combining Reward Propagation using GCN and ICM

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%