-
Notifications
You must be signed in to change notification settings - Fork 3
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
3 changed files
with
181 additions
and
10 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,174 @@ | ||
use core::f64; | ||
use std::error::Error; | ||
|
||
use gauss_quad::GaussLegendre; | ||
use ndarray::{Array1, Array2}; | ||
|
||
use crate::stats::copulas::bivariate::{Bivariate, CopulaType}; | ||
|
||
#[derive(Debug, Clone)] | ||
pub struct Frank { | ||
pub r#type: CopulaType, | ||
pub theta: Option<f64>, | ||
pub tau: Option<f64>, | ||
pub theta_bounds: (f64, f64), | ||
pub invalid_thetas: Vec<f64>, | ||
} | ||
|
||
impl Frank { | ||
pub fn new(theta: Option<f64>, tau: Option<f64>) -> Self { | ||
Self { | ||
r#type: CopulaType::Frank, | ||
theta, | ||
tau, | ||
theta_bounds: (f64::NEG_INFINITY, f64::INFINITY), | ||
invalid_thetas: vec![0.0], | ||
} | ||
} | ||
} | ||
|
||
impl Bivariate for Frank { | ||
fn r#type(&self) -> CopulaType { | ||
self.r#type | ||
} | ||
|
||
fn tau(&self) -> Option<f64> { | ||
self.tau | ||
} | ||
|
||
fn set_tau(&mut self, tau: f64) { | ||
self.tau = Some(tau); | ||
} | ||
|
||
fn theta(&self) -> Option<f64> { | ||
self.theta | ||
} | ||
|
||
fn theta_bounds(&self) -> (f64, f64) { | ||
self.theta_bounds | ||
} | ||
|
||
fn invalid_thetas(&self) -> Vec<f64> { | ||
self.invalid_thetas.clone() | ||
} | ||
|
||
fn set_theta(&mut self, theta: f64) { | ||
self.theta = Some(theta); | ||
} | ||
|
||
fn generator(&self, t: &Array1<f64>) -> Result<Array1<f64>, Box<dyn Error>> { | ||
let theta = self.theta.unwrap(); | ||
let a = ((-theta * t).exp() - 1.0) / ((-theta).exp() - 1.0); | ||
let out = -(a.ln()); | ||
Ok(out) | ||
} | ||
|
||
fn pdf(&self, X: &Array2<f64>) -> Result<Array1<f64>, Box<dyn Error>> { | ||
self.check_fit()?; | ||
|
||
let U = X.column(0).to_owned(); | ||
let V = X.column(1).to_owned(); | ||
|
||
let theta = self.theta.unwrap(); | ||
|
||
if theta == 0.0 { | ||
return Ok(&U * &V); | ||
} | ||
|
||
let num = (-theta * self._g(&Array1::ones(U.len()))?) * (1.0 + self._g(&(&U + &V))?); | ||
let aux = self._g(&U)? + self._g(&V)? + self._g(&Array1::ones(U.len()))?; | ||
let den = aux.pow2(); | ||
Ok(num / den) | ||
} | ||
|
||
fn cdf(&self, X: &Array2<f64>) -> Result<Array1<f64>, Box<dyn Error>> { | ||
self.check_fit()?; | ||
|
||
let U = X.column(0); | ||
let V = X.column(1); | ||
|
||
let theta = self.theta.unwrap(); | ||
let num = ((-theta * &U).exp() - 1.0) * ((-theta * &V).exp() - 1.0); | ||
let den = (-theta).exp() - 1.0; | ||
let out = -1.0 / theta * (1.0 + num / den).ln(); | ||
Ok(out) | ||
} | ||
|
||
fn percent_point(&self, y: &Array1<f64>, V: &Array1<f64>) -> Result<Array1<f64>, Box<dyn Error>> { | ||
self.check_fit()?; | ||
|
||
let theta = self.theta.unwrap(); | ||
|
||
if theta == 0.0 { | ||
return Ok(V.clone()); | ||
} | ||
|
||
let out = Bivariate::percent_point(self, y, V)?; | ||
Ok(out) | ||
} | ||
|
||
fn partial_derivative(&self, X: &Array2<f64>) -> Result<Array1<f64>, Box<dyn std::error::Error>> { | ||
self.check_fit()?; | ||
|
||
let U = X.column(0).to_owned(); | ||
let V = X.column(1).to_owned(); | ||
|
||
let theta = self.theta.unwrap(); | ||
|
||
if theta == 0.0 { | ||
return Ok(V.clone()); | ||
} | ||
|
||
let num = self._g(&U)? * self._g(&V)? + self._g(&U)?; | ||
let den = self._g(&U)? + self._g(&V)? + self._g(&Array1::ones(U.len()))?; | ||
Ok(num / den) | ||
} | ||
|
||
fn compute_theta(&self) -> f64 { | ||
let result = self | ||
.least_squares(Self::_tau_to_theta, 1.0, f64::MIN.ln(), f64::MAX.ln()) | ||
.unwrap(); | ||
|
||
result | ||
} | ||
} | ||
|
||
impl Frank { | ||
fn _g(&self, z: &Array1<f64>) -> Result<Array1<f64>, Box<dyn Error>> { | ||
Ok((-self.theta.unwrap() * z).exp() - 1.0) | ||
} | ||
|
||
fn _tau_to_theta(tau: f64, alpha: f64) -> f64 { | ||
let integrand = |u: f64| u / (u.exp() - 1.0); | ||
let quad = GaussLegendre::new(5).unwrap(); | ||
let integral = quad.integrate(f64::EPSILON, alpha, integrand); | ||
let out = 4.0 * (integral - 1.0) / alpha + 1.0 - tau; | ||
out | ||
} | ||
|
||
// TODO: Improve this implementation | ||
fn least_squares<F>( | ||
&self, | ||
f: F, | ||
initial_guess: f64, | ||
lower_bound: f64, | ||
upper_bound: f64, | ||
) -> Option<f64> | ||
where | ||
F: Fn(f64, f64) -> f64, | ||
{ | ||
let mut guess = initial_guess; | ||
let tol = 1e-6; | ||
for _ in 0..1000 { | ||
let v = f(self.tau.unwrap(), guess); | ||
if v.abs() < tol { | ||
return Some(guess); | ||
} | ||
guess -= v * 0.01; | ||
if guess < lower_bound || guess > upper_bound { | ||
return None; | ||
} | ||
} | ||
None | ||
} | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1 @@ | ||
|