Skip to content

Latest commit

 

History

History
91 lines (66 loc) · 5.5 KB

File metadata and controls

91 lines (66 loc) · 5.5 KB

Interpretable Visual Semantic Alignment via Spectral Attribution

Our work specifically focuses on generating visual explanations of both the image modality and the text modality using concepts from graph spectral theory by solving the characteristic equation of the Laplacian for models that are fine-tuned on the VQA downstream task. Our method is model-agnostic to some extent and post-hoc, capable of generating local explanations catering to each image-question pair provided for inference. The job of our interpretability module is to highlight the regions of image and text (question) that contribute to the model’s decision/answer. We propose the following list of contributions for interpretability of bi-modal models:

  1. Class-agnostic version (Deep Spectral Methods for Interpretability - DSMI): The first is the direct application of graph spectral theory which is unsupervised in nature

  2. Class-specific version (DSMI + Grad): In order to explain the decision of the bi-modal models, we modeled the spectral approach like GradCAM, where "CAM" represents the fiedler eigenvectors generated by the standard spectral approach which are much more robust than pure attention maps

  3. Class-specific and Transformers-specific version (DSMI + Grad + Attn): In combination with the gradients based spectral approach, we utilise the attention maps for transformer specificit

Demo

git clone https://github.com/shiv2110/Transformer-spectral-interpretability.git
cd Transformer-spectral-interpretability
pip install -r requirements.txt
python demo_vqa.py --image-path <path_to_image> --question <question_for_image> --method-name <interpretability_method>

Alt text

Running Perturbation Tests

Download VQA 2.0 validation dataset

https://visualqa.org/download.html

Download COCO 2014 val images, , annotations (val), and questions (val)

root
├── val2014              
|   ├── COCO_val2014_000000000042.jpg
|   └── ...  
├── v2_OpenEnded_mscoco_val2014_questions.json
└── v2_mscoco_val2014_annotations.json

Download valid.json

cd data/vqa
wget https://nlp.cs.unc.edu/data/lxmert_data/vqa/valid.json

Running positive image perturbation test

python perturbation.py --COCO_path <path_to_COCO_samples> --method <interpretability_method> --is-positive-pert True

Running negative image perturbation test

python perturbation.py --COCO_path <path_to_COCO_samples> --method <interpretability_method> 

Running positive text perturbation test

python perturbation.py --COCO_path <path_to_COCO_samples> --method <interpretability_method> --is-text-pert True --is-positive-pert True

Running negative text perturbation test

python perturbation.py --COCO_path <path_to_COCO_samples> --method <interpretability_method> --is-text-pert True

AUC scores for perturbations tests on LXMERT: Lower AUC for positive tests and higher AUC for negative tests indicates better performance

Method Image ve+ Image ve- Text ve+ Text ve-
Hila Chefer Relevance Maps 51.01 62.91 21.57 48.31
Transformer Attribution 52.80 61.16 21.89 47.80
LRP 52.83 60.82 24.14 44.51
Raw Attention 54.36 61.34 32.77 37.40
Grad-CAM 57.97 59.59 34.50 37.56
Rollout 57.15 58.26 38.71 31.47
DSMI 53.47 59.13 28.67 40.28
DSMI + Grad 53.77 62.28 24.78 44.80
DSMI + Grad + Attn 53.42 62.23 24.12 45.47

DSMI + Grad. Explanations for CLIP

DSMI + Grad. on CLIP

Credits