-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
* solution python * python scripts ra
- Loading branch information
Showing
4 changed files
with
8,497 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,92 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": { | ||
"id": "HnsoC_-olsXJ" | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"## READING SPSS FILES\n", | ||
"import pyreadstat\n", | ||
"df, meta = pyreadstat.read_sav(filename, row_limit=10)\n", | ||
"# print codebook\n", | ||
"print(meta.variable_value_labels)\n", | ||
"# you can then read specific variables with usecols=[\"var1\",\"var2\"]\n", | ||
"# you can disable the conversion to categorical with formats_as_category=False. It's much faster but then you'll have -9 for missing values (and others). Be careful using it." | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": { | ||
"id": "3U46RzMblxFQ" | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"## WORKING WITH POLARS instead of pandas (10x speed-up)\n", | ||
"import polars as pl\n", | ||
"# Read a CSV file (arguments similar to pandas but with different names, e.g. n_rows, delimiter)\n", | ||
"csv_df = pl.read_csv('filename.csv')\n", | ||
"# Read a Feather file\n", | ||
"feather_df = pl.read_feather('filename.feather')\n", | ||
"\n", | ||
"# Converting from a Pandas file (e.g. after reading it with pyreadstat)\n", | ||
"pdf = pl.from_pandas(df)\n", | ||
"# you can also convert back to pandas\n", | ||
"pandas_df = polars_df.to_pandas()\n", | ||
"\n", | ||
"## Select variables\n", | ||
"#In pandas: selected_df_pandas = df[[\"var1\", \"var2\"]]\n", | ||
"subset_pdf = pdf.select([\"var1\", \"var2\"])\n", | ||
"\n", | ||
"## Select rows\n", | ||
"#In pandas: subset_df_pandas = df.loc[df[\"var1\"] == 3]\n", | ||
"subset_df_polars = pdf.filter(pdf[\"var1\"] == 3)\n", | ||
"\n", | ||
"## Merge\n", | ||
"#In pandas (e.g. left join): merged_df_pandas = pd.merge(df1, df2, on=[\"var1\", \"var2\"], how=\"left\")\n", | ||
"merged_pdf_polars = pdf1.join(pdf2, on=[\"var1\", \"var2\"], how='left')\n", | ||
"\n", | ||
"\n", | ||
"## Lazy read to filter\n", | ||
"pdf = (\n", | ||
"pl.scan_csv(\"my_long_file.csv\") # lazy, doesn't do a thing\n", | ||
" .select(\n", | ||
" [\"a\", \"c\"]\n", | ||
" ) # select only 2 columns (other columns will not be read)\n", | ||
" .filter(\n", | ||
" pl.col(\"a\") > 10\n", | ||
" ) # the filter is pushed down the scan, so less data is read into memory\n", | ||
" .collect() # collect the data\n", | ||
")" | ||
] | ||
} | ||
], | ||
"metadata": { | ||
"colab": { | ||
"authorship_tag": "ABX9TyMFOeiqZbYzvppLaHYx56H2", | ||
"provenance": [] | ||
}, | ||
"kernelspec": { | ||
"display_name": "Python 3 (ipykernel)", | ||
"language": "python", | ||
"name": "python3" | ||
}, | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 3 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython3", | ||
"version": "3.9.15" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 4 | ||
} |
Oops, something went wrong.