Skip to content

Commit

Permalink
Add files via upload
Browse files Browse the repository at this point in the history
  • Loading branch information
koichi-saito-sony authored Jun 5, 2024
1 parent 958dab2 commit 68b90d6
Show file tree
Hide file tree
Showing 60 changed files with 11,042 additions and 0 deletions.
6 changes: 6 additions & 0 deletions audioldm_eval/audio/__init__.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,6 @@
# import audio.tools
# import audio.stft
# import audio.audio_processing
from .stft import *
from .audio_processing import *
from .tools import *
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
100 changes: 100 additions & 0 deletions audioldm_eval/audio/audio_processing.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,100 @@
import torch
import numpy as np
import librosa.util as librosa_util
from scipy.signal import get_window


def window_sumsquare(
window,
n_frames,
hop_length,
win_length,
n_fft,
dtype=np.float32,
norm=None,
):
"""
# from librosa 0.6
Compute the sum-square envelope of a window function at a given hop length.
This is used to estimate modulation effects induced by windowing
observations in short-time fourier transforms.
Parameters
----------
window : string, tuple, number, callable, or list-like
Window specification, as in `get_window`
n_frames : int > 0
The number of analysis frames
hop_length : int > 0
The number of samples to advance between frames
win_length : [optional]
The length of the window function. By default, this matches `n_fft`.
n_fft : int > 0
The length of each analysis frame.
dtype : np.dtype
The data type of the output
Returns
-------
wss : np.ndarray, shape=`(n_fft + hop_length * (n_frames - 1))`
The sum-squared envelope of the window function
"""
if win_length is None:
win_length = n_fft

n = n_fft + hop_length * (n_frames - 1)
x = np.zeros(n, dtype=dtype)

# Compute the squared window at the desired length
win_sq = get_window(window, win_length, fftbins=True)
win_sq = librosa_util.normalize(win_sq, norm=norm) ** 2
win_sq = librosa_util.pad_center(win_sq, n_fft)

# Fill the envelope
for i in range(n_frames):
sample = i * hop_length
x[sample : min(n, sample + n_fft)] += win_sq[: max(0, min(n_fft, n - sample))]
return x


def griffin_lim(magnitudes, stft_fn, n_iters=30):
"""
PARAMS
------
magnitudes: spectrogram magnitudes
stft_fn: STFT class with transform (STFT) and inverse (ISTFT) methods
"""

angles = np.angle(np.exp(2j * np.pi * np.random.rand(*magnitudes.size())))
angles = angles.astype(np.float32)
angles = torch.autograd.Variable(torch.from_numpy(angles))
signal = stft_fn.inverse(magnitudes, angles).squeeze(1)

for i in range(n_iters):
_, angles = stft_fn.transform(signal)
signal = stft_fn.inverse(magnitudes, angles).squeeze(1)
return signal


def dynamic_range_compression(x, normalize_fun=torch.log, C=1, clip_val=1e-5):
"""
PARAMS
------
C: compression factor
"""
return normalize_fun(torch.clamp(x, min=clip_val) * C)


def dynamic_range_decompression(x, C=1):
"""
PARAMS
------
C: compression factor used to compress
"""
return torch.exp(x) / C
178 changes: 178 additions & 0 deletions audioldm_eval/audio/stft.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,178 @@
import torch
import torch.nn.functional as F
import numpy as np
from scipy.signal import get_window
from librosa.util import pad_center, tiny
from librosa.filters import mel as librosa_mel_fn

from audioldm_eval.audio.audio_processing import (
dynamic_range_compression,
dynamic_range_decompression,
window_sumsquare,
)


class STFT(torch.nn.Module):
"""adapted from Prem Seetharaman's https://github.com/pseeth/pytorch-stft"""

def __init__(self, filter_length, hop_length, win_length, window="hann"):
super(STFT, self).__init__()
self.filter_length = filter_length
self.hop_length = hop_length
self.win_length = win_length
self.window = window
self.forward_transform = None
scale = self.filter_length / self.hop_length
fourier_basis = np.fft.fft(np.eye(self.filter_length))

cutoff = int((self.filter_length / 2 + 1))
fourier_basis = np.vstack(
[np.real(fourier_basis[:cutoff, :]), np.imag(fourier_basis[:cutoff, :])]
)

forward_basis = torch.FloatTensor(fourier_basis[:, None, :])
inverse_basis = torch.FloatTensor(
np.linalg.pinv(scale * fourier_basis).T[:, None, :]
)

if window is not None:
assert filter_length >= win_length
# get window and zero center pad it to filter_length
fft_window = get_window(window, win_length, fftbins=True)
fft_window = pad_center(fft_window, filter_length)
fft_window = torch.from_numpy(fft_window).float()

# window the bases
forward_basis *= fft_window
inverse_basis *= fft_window

self.register_buffer("forward_basis", forward_basis.float())
self.register_buffer("inverse_basis", inverse_basis.float())

def transform(self, input_data):
num_batches = input_data.size(0)
num_samples = input_data.size(1)

self.num_samples = num_samples

# similar to librosa, reflect-pad the input
input_data = input_data.view(num_batches, 1, num_samples)
input_data = F.pad(
input_data.unsqueeze(1),
(int(self.filter_length / 2), int(self.filter_length / 2), 0, 0),
mode="reflect",
)
input_data = input_data.squeeze(1)

forward_transform = F.conv1d(
input_data,
torch.autograd.Variable(self.forward_basis, requires_grad=False),
stride=self.hop_length,
padding=0,
).cpu()

cutoff = int((self.filter_length / 2) + 1)
real_part = forward_transform[:, :cutoff, :]
imag_part = forward_transform[:, cutoff:, :]

magnitude = torch.sqrt(real_part**2 + imag_part**2)
phase = torch.autograd.Variable(torch.atan2(imag_part.data, real_part.data))

return magnitude, phase

def inverse(self, magnitude, phase):
recombine_magnitude_phase = torch.cat(
[magnitude * torch.cos(phase), magnitude * torch.sin(phase)], dim=1
)

inverse_transform = F.conv_transpose1d(
recombine_magnitude_phase,
torch.autograd.Variable(self.inverse_basis, requires_grad=False),
stride=self.hop_length,
padding=0,
)

if self.window is not None:
window_sum = window_sumsquare(
self.window,
magnitude.size(-1),
hop_length=self.hop_length,
win_length=self.win_length,
n_fft=self.filter_length,
dtype=np.float32,
)
# remove modulation effects
approx_nonzero_indices = torch.from_numpy(
np.where(window_sum > tiny(window_sum))[0]
)
window_sum = torch.autograd.Variable(
torch.from_numpy(window_sum), requires_grad=False
)
window_sum = window_sum
inverse_transform[:, :, approx_nonzero_indices] /= window_sum[
approx_nonzero_indices
]

# scale by hop ratio
inverse_transform *= float(self.filter_length) / self.hop_length

inverse_transform = inverse_transform[:, :, int(self.filter_length / 2) :]
inverse_transform = inverse_transform[:, :, : -int(self.filter_length / 2) :]

return inverse_transform

def forward(self, input_data):
self.magnitude, self.phase = self.transform(input_data)
reconstruction = self.inverse(self.magnitude, self.phase)
return reconstruction


class TacotronSTFT(torch.nn.Module):
def __init__(
self,
filter_length,
hop_length,
win_length,
n_mel_channels,
sampling_rate,
mel_fmin,
mel_fmax,
):
super(TacotronSTFT, self).__init__()
self.n_mel_channels = n_mel_channels
self.sampling_rate = sampling_rate
self.stft_fn = STFT(filter_length, hop_length, win_length)
mel_basis = librosa_mel_fn(
sampling_rate, filter_length, n_mel_channels, mel_fmin, mel_fmax
)
mel_basis = torch.from_numpy(mel_basis).float()
self.register_buffer("mel_basis", mel_basis)

def spectral_normalize(self, magnitudes, normalize_fun):
output = dynamic_range_compression(magnitudes, normalize_fun)
return output

def spectral_de_normalize(self, magnitudes):
output = dynamic_range_decompression(magnitudes)
return output

def mel_spectrogram(self, y, normalize_fun=torch.log):
"""Computes mel-spectrograms from a batch of waves
PARAMS
------
y: Variable(torch.FloatTensor) with shape (B, T) in range [-1, 1]
RETURNS
-------
mel_output: torch.FloatTensor of shape (B, n_mel_channels, T)
"""
assert torch.min(y.data) >= -1
assert torch.max(y.data) <= 1

magnitudes, phases = self.stft_fn.transform(y)
magnitudes = magnitudes.data
mel_output = torch.matmul(self.mel_basis, magnitudes)
mel_output = self.spectral_normalize(mel_output, normalize_fun)
energy = torch.norm(magnitudes, dim=1)

return mel_output, energy
60 changes: 60 additions & 0 deletions audioldm_eval/audio/tools.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,60 @@
import torch
import numpy as np
from scipy.io.wavfile import write
import pickle
import json
from audioldm_eval.audio.audio_processing import griffin_lim


def save_pickle(obj, fname):
print("Save pickle at " + fname)
with open(fname, "wb") as f:
pickle.dump(obj, f)


def load_pickle(fname):
print("Load pickle at " + fname)
with open(fname, "rb") as f:
res = pickle.load(f)
return res


def write_json(my_dict, fname):
print("Save json file at " + fname)
json_str = json.dumps(my_dict)
with open(fname, "w") as json_file:
json_file.write(json_str)


def load_json(fname):
with open(fname, "r") as f:
data = json.load(f)
return data


def get_mel_from_wav(audio, _stft):
audio = torch.clip(torch.FloatTensor(audio).unsqueeze(0), -1, 1)
audio = torch.autograd.Variable(audio, requires_grad=False)
melspec, energy = _stft.mel_spectrogram(audio)
melspec = torch.squeeze(melspec, 0).numpy().astype(np.float32)
energy = torch.squeeze(energy, 0).numpy().astype(np.float32)
return melspec, energy


def inv_mel_spec(mel, out_filename, _stft, griffin_iters=60):
mel = torch.stack([mel])
mel_decompress = _stft.spectral_de_normalize(mel)
mel_decompress = mel_decompress.transpose(1, 2).data.cpu()
spec_from_mel_scaling = 1000
spec_from_mel = torch.mm(mel_decompress[0], _stft.mel_basis)
spec_from_mel = spec_from_mel.transpose(0, 1).unsqueeze(0)
spec_from_mel = spec_from_mel * spec_from_mel_scaling

audio = griffin_lim(
torch.autograd.Variable(spec_from_mel[:, :, :-1]), _stft._stft_fn, griffin_iters
)

audio = audio.squeeze()
audio = audio.cpu().numpy()
audio_path = out_filename
write(audio_path, _stft.sampling_rate, audio)
Loading

0 comments on commit 68b90d6

Please sign in to comment.