Skip to content

Commit

Permalink
Release 3.1.0 (#152)
Browse files Browse the repository at this point in the history
* Added boxplot feature (#151)

* Add method for boxplot dataframe

* Add method for plotting boxplot

* Change default order to ascending

* Add check for categorical_order_by

* Remove show() from boxplot method

* Fix wrong horizontal boxplot

* Correctly set numeric axis range

* Remove _sort_categories method and its usages

* Add tests for boxplot

* Change to not deprecated syntax

* Improve formatting

* Add doc to boxplot method

* Add doc for _compute_boxplot_df

* Rename test_standard to test_default

* Updated version and added boxplot example to examples notebook

---------

Co-authored-by: Quoc Duong Bui <[email protected]>
  • Loading branch information
iampelle and vanHekthor authored Mar 22, 2023
1 parent 7af764a commit 59df367
Show file tree
Hide file tree
Showing 6 changed files with 678 additions and 152 deletions.
5 changes: 5 additions & 0 deletions HISTORY.rst
Original file line number Diff line number Diff line change
Expand Up @@ -2,6 +2,11 @@
History
=======

3.1.0 (2023-03-22)
------------------

* Added Boxplot Chart including example in examples notebook

3.0.5 (2022-12-13)
------------------

Expand Down
2 changes: 1 addition & 1 deletion chartify/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -22,7 +22,7 @@

__author__ = """Chris Halpert"""
__email__ = '[email protected]'
__version__ = '3.0.5'
__version__ = '3.1.0'

_IPYTHON_INSTANCE = False

Expand Down
243 changes: 243 additions & 0 deletions chartify/_core/plot.py
Original file line number Diff line number Diff line change
Expand Up @@ -1107,6 +1107,64 @@ def _construct_source(self,

return source, factors, stack_values

@staticmethod
def _compute_boxplot_df(data_frame, categorical_columns, numeric_column):
"""Computes the data frames for a boxplot.
Returns:
quantlies_and_bounds: data frame for the boxes and whiskers of a
boxplot
outliers: data frame with outliers
"""
# compute quantiles
q_frame = data_frame.groupby(categorical_columns)[
numeric_column].quantile([0.25, 0.5, 0.75])
q_frame = q_frame.unstack().reset_index()
q_frame.columns = categorical_columns + \
['q1', 'q2', 'q3']
df_with_quantiles = pd.merge(
data_frame, q_frame, on=categorical_columns, how="left")

# compute IQR outlier bounds
iqr = df_with_quantiles.q3 - df_with_quantiles.q1
df_with_quantiles['upper'] = df_with_quantiles.q3 + 1.5 * iqr
df_with_quantiles['lower'] = df_with_quantiles.q1 - 1.5 * iqr

# adjust outlier bounds to closest observations still within bounds
# for upper bound
le_upper = df_with_quantiles[df_with_quantiles[numeric_column].le(
df_with_quantiles.upper)]
group_max_le_upper = le_upper.groupby(
categorical_columns, as_index=False)[numeric_column].max()
group_max_le_upper.columns = categorical_columns + ['upper']

df_with_quantiles.drop('upper', axis=1, inplace=True)
df_with_quantiles = pd.merge(
df_with_quantiles,
group_max_le_upper,
on=categorical_columns,
how='left')

# for lower bound
ge_lower = df_with_quantiles[df_with_quantiles[numeric_column].ge(
df_with_quantiles.lower)]
group_min_ge_lower = ge_lower.groupby(
categorical_columns, as_index=False)[numeric_column].min()
group_min_ge_lower.columns = categorical_columns + ['lower']
df_with_quantiles.drop('lower', axis=1, inplace=True)
df_with_quantiles = pd.merge(df_with_quantiles,
group_min_ge_lower,
on=categorical_columns,
how='left')

quantiles_and_bounds = df_with_quantiles.groupby(categorical_columns)[[
'q1', 'q2', 'q3', 'lower', 'upper']].first().reset_index()

outliers = df_with_quantiles[~df_with_quantiles[numeric_column].between(
df_with_quantiles.lower, df_with_quantiles.upper)]

return quantiles_and_bounds, outliers

def text(self,
data_frame,
categorical_columns,
Expand Down Expand Up @@ -2057,3 +2115,188 @@ def scatter(self,
self._chart.style._apply_settings('legend')

return self._chart

def boxplot(self,
data_frame,
categorical_columns,
numeric_column,
color_column=None,
color_order=None,
categorical_order_by='labels',
categorical_order_ascending=True,
outlier_marker='circle',
outlier_color='black',
outlier_alpha=0.3,
outlier_size=15):
"""Box-and-whisker plot.
Note:
To change the orientation set x_axis_type or y_axis_type
argument of the Chart object.
Args:
data_frame (pandas.DataFrame): Data source for the plot.
categorical_columns (str or list): Column name to plot on
the categorical axis.
numeric_column (str): Column name to plot on the numerical axis.
color_column (str, optional): Column name to group by on
the color dimension.
color_order (list, optional):
List of values within the 'color_column' for
specific color sort.
categorical_order_by (str or array-like, optional):
Dimension for ordering the categorical axis. Default 'labels'.
- 'labels': Order categorical axis by the categorical labels.
- array-like object (list, tuple, np.array): New labels
to conform the categorical axis to.
categorical_order_ascending (bool, optional):
Sort order of the categorical axis. Default True.
outlier_marker (str, optional): Outlier marker type. Valid types:
'asterisk', 'circle', 'circle_cross', 'circle_x', 'cross',
'diamond', 'diamond_cross', 'hex', 'inverted_triangle',
'square', 'square_x', 'square_cross', 'triangle',
'x', '*', '+', 'o', 'ox', 'o+' Default 'circle'
outlier_color (str, optional): Color name or hex value.
See chartify.color_palettes.show() for available color names.
Default 'black'
outlier_alpha (float, optional): Alpha value. Default 0.3
outlier_size (float, optional): Size of outlier markers.
Default 15
"""

# check categorical_order_by value
order_length = getattr(categorical_order_by, "__len__", None)
is_string = isinstance(categorical_order_by, str)
if ((not is_string and order_length is None)
or (is_string and categorical_order_by != 'labels')):
raise ValueError("""Argument categorical_order_by must be 'labels',
or a list of values.""")

df_intervals_and_floating_bars, outliers = self._compute_boxplot_df(
data_frame, categorical_columns, numeric_column)

# upper and lower bound
self.interval(df_intervals_and_floating_bars,
categorical_columns,
'lower',
'upper',
categorical_order_by=categorical_order_by,
categorical_order_ascending=categorical_order_ascending)

# boxes for q1 to q2 and q2 to q3
vertical = self._chart.axes._vertical

source_low, _, _ = self._construct_source(
df_intervals_and_floating_bars,
categorical_columns,
['q1', 'q2'],
categorical_order_by=categorical_order_by,
categorical_order_ascending=categorical_order_ascending,
color_column=color_column)

source_high, factors, _ = self._construct_source(
df_intervals_and_floating_bars,
categorical_columns,
['q2', 'q3'],
categorical_order_by=categorical_order_by,
categorical_order_ascending=categorical_order_ascending,
color_column=color_column)

colors, _ = self._get_color_and_order(df_intervals_and_floating_bars,
color_column,
color_order,
categorical_columns)

if color_column is None:
colors = colors[0]

self._set_categorical_axis_default_factors(vertical, factors)
self._set_categorical_axis_default_range(
vertical, data_frame, numeric_column)

bar_width = self._get_bar_width(factors)

if color_column:
legend = bokeh.core.properties.field('color_column')
legend = 'color_column'
else:
legend = None

if vertical:
self._plot_with_legend(
self._chart.figure.vbar,
legend_group=None,
x='factors',
width=bar_width,
top='q2',
bottom='q1',
line_color='white',
source=source_low,
fill_color=colors,
)
self._plot_with_legend(
self._chart.figure.vbar,
legend_group=legend,
x='factors',
width=bar_width,
top='q3',
bottom='q2',
line_color='white',
source=source_high,
fill_color=colors,
)

else:

self._plot_with_legend(
self._chart.figure.hbar,
legend_group=None,
y='factors',
height=bar_width,
right='q2',
left='q1',
line_color='white',
source=source_low,
fill_color=colors,
)
self._plot_with_legend(
self._chart.figure.hbar,
legend_group=legend,
y='factors',
height=bar_width,
right='q3',
left='q2',
line_color='white',
source=source_high,
fill_color=colors,
)

# outliers
factors = outliers.set_index(categorical_columns).index
outliers = (
outliers[
[col for col in outliers.columns if col == numeric_column]])

source_outliers = self._named_column_data_source(
outliers, series_name=None)
source_outliers.add(factors, 'factors')

if vertical:
x_value, y_value = 'factors', numeric_column
else:
y_value, x_value = 'factors', numeric_column

self._plot_with_legend(
self._chart.figure.scatter,
legend_label=None,
x=x_value,
y=y_value,
size=outlier_size,
fill_color=outlier_color,
line_color=outlier_color,
source=source_outliers,
marker=outlier_marker,
alpha=outlier_alpha
)

return self._chart
32 changes: 32 additions & 0 deletions chartify/examples.py
Original file line number Diff line number Diff line change
Expand Up @@ -482,6 +482,38 @@ def _bar_example_4(quantity_by_fruit):
plot_bar.__doc__ = _core.plot.PlotMixedTypeXY.bar.__doc__


@_print_source
def plot_boxplot():
"""
Interval example
"""
import chartify

# Generate example data
data = chartify.examples.example_data()
"""Print Break"""
_boxplot_example_1(data)


@_print_source
def _boxplot_example_1(quantity_by_fruit_and_country):
"""# Plot the data with labels"""
ch = chartify.Chart(x_axis_type='categorical')
ch.plot.boxplot(
data_frame=quantity_by_fruit_and_country,
categorical_columns=['fruit', 'country'],
numeric_column='quantity',
color_column='country'
)
ch.set_title('Distribution of number of fruits by day')
ch.set_subtitle('split by fruit type and country')
ch.axes.set_xaxis_label('Fruit and country')
ch.axes.set_yaxis_label('Distribution of number of fruits by day')
ch.show(_OUTPUT_FORMAT)

plot_boxplot.__doc__ = _core.plot.PlotMixedTypeXY.boxplot.__doc__


@_print_source
def plot_interval():
"""
Expand Down
406 changes: 255 additions & 151 deletions examples/Examples.ipynb

Large diffs are not rendered by default.

Loading

0 comments on commit 59df367

Please sign in to comment.