Skip to content

Commit

Permalink
Add repeat_interleave operator test plan [skip ci]
Browse files Browse the repository at this point in the history
  • Loading branch information
vobojevicTT committed Jan 16, 2025
1 parent 626ca63 commit f459d7f
Showing 1 changed file with 166 additions and 0 deletions.
166 changes: 166 additions & 0 deletions forge/test/operators/pytorch/tm/test_repeat_interleave.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,166 @@
# SPDX-FileCopyrightText: © 2024 Tenstorrent AI ULC

# SPDX-License-Identifier: Apache-2.0

import forge
import math
import torch
import pytest
import random
import os

from typing import List, Dict
from loguru import logger

from forge.verify.config import VerifyConfig

from forge.verify.value_checkers import AllCloseValueChecker
from forge.verify.verify import verify as forge_verify

from test.operators.utils import InputSourceFlags, VerifyUtils
from test.operators.utils import InputSource
from test.operators.utils import TestVector
from test.operators.utils import TestPlan
from test.operators.utils import TestPlanUtils
from test.operators.utils import FailingReasons
from test.operators.utils.compat import TestDevice
from test.operators.utils import TestCollection
from test.operators.utils import TestCollectionCommon
from test.operators.utils import ValueRanges

from test.operators.pytorch.eltwise_unary import ModelFromAnotherOp, ModelDirect, ModelConstEvalPass


class TestVerification:

MODEL_TYPES = {
InputSource.FROM_ANOTHER_OP: ModelFromAnotherOp,
InputSource.FROM_HOST: ModelDirect,
InputSource.FROM_DRAM_QUEUE: ModelDirect,
InputSource.CONST_EVAL_PASS: ModelConstEvalPass,
}

@classmethod
def verify(
cls,
test_device: TestDevice,
test_vector: TestVector,
input_params: List[Dict] = [],
warm_reset: bool = False,
):

input_source_flag: InputSourceFlags = None
if test_vector.input_source in (InputSource.FROM_DRAM_QUEUE,):
input_source_flag = InputSourceFlags.FROM_DRAM

operator = getattr(torch, test_vector.operator)
kwargs = test_vector.kwargs if test_vector.kwargs else {}

model_type = cls.MODEL_TYPES[test_vector.input_source]
pytorch_model = (
model_type(operator, test_vector.input_shape, kwargs)
if test_vector.input_source in (InputSource.CONST_EVAL_PASS,)
else model_type(operator, kwargs)
)

input_shapes = tuple([test_vector.input_shape])

logger.trace(f"***input_shapes: {input_shapes}")

VerifyUtils.verify(
model=pytorch_model,
test_device=test_device,
input_shapes=input_shapes,
input_params=input_params,
input_source_flag=input_source_flag,
dev_data_format=test_vector.dev_data_format,
math_fidelity=test_vector.math_fidelity,
warm_reset=warm_reset,
value_range=ValueRanges.SMALL,
deprecated_verification=False,
verify_config=VerifyConfig(value_checker=AllCloseValueChecker()),
)


class TestParamsData:

__test__ = False

test_plan: TestPlan = None

operator = ["repeat_interleave"]

specific_cases = {
# input_shape: [(repeats, dim)...]
(1, 1, 1, 58): [(1, 0), (1, 1), (58, 2)],
}

@classmethod
def generate_kwargs(cls, test_vector: TestVector):

rng = random.Random(math.prod(test_vector.input_shape))

yield {
# repeats is only int values, tensor is not supported yet
"repeats": rng.randint(1, 10),
"dim": rng.choice([None] + list(range(len(test_vector.input_shape)))),
}

@classmethod
def generate_specific_kwargs(cls, test_vector: TestVector):

for repeats, dim in cls.specific_cases[test_vector.input_shape]:
yield {
"repeats": repeats,
"dim": dim,
}


TestParamsData.test_plan = TestPlan(
verify=lambda test_device, test_vector: TestVerification.verify(
test_device,
test_vector,
),
collections=[
# Test operators with all shapes and input sources collection:
TestCollection(
operators=TestParamsData.operator,
input_sources=TestCollectionCommon.all.input_sources,
input_shapes=TestCollectionCommon.all.input_shapes,
kwargs=lambda test_vector: TestParamsData.generate_kwargs(test_vector),
),
# Test Data formats collection:
TestCollection(
operators=TestParamsData.operator,
input_sources=TestCollectionCommon.single.input_sources,
input_shapes=TestCollectionCommon.single.input_shapes,
kwargs=lambda test_vector: TestParamsData.generate_kwargs(test_vector),
dev_data_formats=[
item
for item in TestCollectionCommon.all.dev_data_formats
if item not in TestCollectionCommon.single.dev_data_formats
]
),
# Test math fidelity collection:
TestCollection(
operators=TestParamsData.operator,
input_sources=TestCollectionCommon.single.input_sources,
input_shapes=TestCollectionCommon.single.input_shapes,
kwargs=lambda test_vector: TestParamsData.generate_kwargs(test_vector),
dev_data_formats=TestCollectionCommon.single.dev_data_formats,
math_fidelities=TestCollectionCommon.all.math_fidelities,
),
# Test specific cases collection:
TestCollection(
operators=TestParamsData.operator,
input_sources=TestCollectionCommon.all.input_sources,
input_shapes=TestParamsData.specific_cases.keys(),
kwargs=lambda test_vector: TestParamsData.generate_specific_kwargs(test_vector),
),
],
failing_rules=[],
)


def get_test_plans() -> List[TestPlan]:
return [TestParamsData.test_plan]

0 comments on commit f459d7f

Please sign in to comment.