Skip to content

Commit

Permalink
Merge remote-tracking branch 'origin/develop'
Browse files Browse the repository at this point in the history
  • Loading branch information
theGreatWhiteShark committed Jul 11, 2022
2 parents 3ac0ed4 + 89b90d1 commit 3a11d41
Show file tree
Hide file tree
Showing 7 changed files with 68 additions and 42 deletions.
9 changes: 4 additions & 5 deletions DESCRIPTION
Original file line number Diff line number Diff line change
@@ -1,12 +1,12 @@
Package: climex
Type: Package
Title: Estimating Extreme Events in Climatic Time Series (using Data of the DWD)
Version: 2.0.1
Date: 2019-02-25
Version: 2.0.2
Date: 2022-07-11
LazyData: true
Authors@R: person("Philipp Mueller", role = c("aut","cre"),
email = "[email protected]")
Maintainer: Philipp Mueller <[email protected]>
email = "[email protected]")
Maintainer: Philipp Mueller <[email protected]>
Description: The fitting of the generalized extreme value (GEV) and generalized Pareto (GP) distribution using maximum likelihood (ML) has an inherent tendency to produce numerical artifacts. By using the well-oiled framework of constrained optimization, in this we utilize the augmented Lagrangian method, the optimization find the global optimum significantly more often then the unconstrained one. In addition the package is focused on handling climatic time series of class 'xts' and provides a couple of convenience functions to handle these objects.
URL: https://gitlab.com/theGreatWhiteShark/climex
Depends:
Expand All @@ -18,7 +18,6 @@ Imports:
grid,
Rcpp,
RColorBrewer,
deseasonalize,
Lmoments,
moments,
numDeriv,
Expand Down
16 changes: 16 additions & 0 deletions NEWS.md
Original file line number Diff line number Diff line change
@@ -1,3 +1,19 @@
# v2.0.2
- `deseasonalize` dependency (not available anymore) to allow
installing the package again
- Fix warnings in try-error checks. Some objects have more than a
single class/return a string list when provided to the `class()`
function. All checks whether the class of an error is "try-error" is
now wrapped in `any()` to ensure it both works and does not produce
any warnings
- Fix bootstrap unit tests. There seems to have been some changes in
the sampling algorithms or random number generation of R
invalidating the previous bootstrap error estimates. Well, since
there was an update to a new major release, this is not too
unexpected. Also, the errors of the same order and still
reproducible. I updated the values.


# v2.0.1
- Updating the vignette. Removing the part describing the removed
input function `source.data()` and the customization of the no
Expand Down
16 changes: 8 additions & 8 deletions R/extremes.R
Original file line number Diff line number Diff line change
Expand Up @@ -1371,14 +1371,14 @@ return.level.climex.fit.gev <-
x$control$hessian[ 1 : 2, 1 : 2 ] ),
silent = silent )
## Augment the result again to ensure compatibility
if ( class( error.covariance ) != "try-error" ){
if ( any( class( error.covariance ) != "try-error" ) ){
dummy.matrix <- matrix( rep( 0, 9 ), nrow = 3,
ncol = 3 )
dummy.matrix[ 1 : 2, 1 : 2 ] <- error.covariance
error.covariance <- dummy.matrix
}
}
if ( class( error.covariance ) == "try-error" ){
if ( any( class( error.covariance ) == "try-error" ) ){
x.hessian <-
numDeriv::hessian( likelihood, x = x$par, x.in = x$x,
model = "gev" )
Expand Down Expand Up @@ -1754,14 +1754,14 @@ return.level.climex.fit.gpd <-
x$control$hessian[ 1 ] ),
silent = silent )
## Augment the result again to ensure compatibility
if ( class( error.covariance ) != "try-error" ){
if ( any( class( error.covariance ) != "try-error" ) ){
dummy.matrix <- matrix( rep( 0, 4 ), nrow = 2,
ncol = 2 )
dummy.matrix[ 1 ] <- error.covariance
error.covariance <- dummy.matrix
}
}
if ( class( error.covariance ) == "try-error" ){
if ( any( class( error.covariance ) == "try-error" ) ){
x.hessian <-
numDeriv::hessian( likelihood, x = x$par, x.in = x$x,
model = "gpd" )
Expand Down Expand Up @@ -2938,14 +2938,14 @@ upper.limit.climex.fit.gev <-
x$control$hessian[ 1 : 2, 1 : 2 ] ),
silent = TRUE )
## Augment the result again to ensure compatibility
if ( class( error.covariance ) != "try-error" ){
if ( any( class( error.covariance ) != "try-error" ) ){
dummy.matrix <- matrix( rep( 0, 9 ), nrow = 3,
ncol = 3 )
dummy.matrix[ 1 : 2, 1 : 2 ] <- error.covariance
error.covariance <- dummy.matrix
}
}
if ( class( error.covariance ) == "try-error" ){
if ( any( class( error.covariance ) == "try-error" ) ){
x.hessian <-
numDeriv::hessian( likelihood, x = x$par, x.in = x$x,
model = "gev" )
Expand Down Expand Up @@ -3269,14 +3269,14 @@ upper.limit.climex.fit.gpd <-
x$control$hessian[ 1 ] ),
silent = TRUE )
## Augment the result again to ensure compatibility
if ( class( error.covariance ) != "try-error" ){
if ( any( class( error.covariance ) != "try-error" ) ){
dummy.matrix <- matrix( rep( 0, 4 ), nrow = 2,
ncol = 2 )
dummy.matrix[ 1 ] <- error.covariance
error.covariance <- dummy.matrix
}
}
if ( class( error.covariance ) == "try-error" ){
if ( any( class( error.covariance ) == "try-error" ) ){
x.hessian <-
numDeriv::hessian( likelihood, x = x$par, x.in = x$x,
model = "gpd" )
Expand Down
28 changes: 14 additions & 14 deletions R/opti.R
Original file line number Diff line number Diff line change
Expand Up @@ -822,13 +822,13 @@ fit.gev.xts <- function( x, initial = NULL,
res.optim$control$hessian[ 1 : 2, 1 : 2 ] ),
silent = silent )
## Augment the result again to ensure compatibility
if ( class( error.covariance ) != "try-error" ){
if ( any( class( error.covariance ) != "try-error" ) ) {
dummy.matrix <- matrix( rep( 0, 9 ), nrow = 3, ncol = 3 )
dummy.matrix[ 1 : 2, 1 : 2 ] <- error.covariance
error.covariance <- dummy.matrix
}
}
if ( class( error.covariance ) == "try-error" ||
if ( any( class( error.covariance ) == "try-error" ) ||
error.estimation == "MC" ||
any( is.nan( res.optim$control$hessian ) ) ){
parameter.estimate <- res.optim$par
Expand Down Expand Up @@ -895,7 +895,7 @@ fit.gev.xts <- function( x, initial = NULL,
method = "Nelder-Mead" ),
x.in = yy, model = "gev" )$par ) ) )
}
if ( class( samples.fit ) == "try-error" ){
if ( any( class( samples.fit ) == "try-error" ) ){
errors <- c( NaN, NaN, NaN,
rep( NaN, length( return.period ) ) )
} else {
Expand Down Expand Up @@ -1344,13 +1344,13 @@ fit.gev.default <- function( x, initial = NULL,
res.optim$control$hessian[ 1 : 2, 1 : 2 ] ),
silent = silent )
## Augment the result again to ensure compatibility
if ( class( error.covariance ) != "try-error" ){
if ( any( class( error.covariance ) != "try-error" ) ){
dummy.matrix <- matrix( rep( 0, 9 ), nrow = 3, ncol = 3 )
dummy.matrix[ 1 : 2, 1 : 2 ] <- error.covariance
error.covariance <- dummy.matrix
}
}
if ( class( error.covariance ) == "try-error" ||
if ( any( class( error.covariance ) == "try-error" ) ||
error.estimation == "MC" ||
any( is.nan( res.optim$control$hessian ) ) ){
parameter.estimate <- res.optim$par
Expand Down Expand Up @@ -1417,7 +1417,7 @@ fit.gev.default <- function( x, initial = NULL,
method = "Nelder-Mead" ),
x.in = yy, model = "gev" )$par ) ) )
}
if ( class( samples.fit ) == "try-error" ){
if ( any( class( samples.fit ) == "try-error" ) ){
errors <- c( NaN, NaN, NaN,
rep( NaN, length( return.period ) ) )
} else {
Expand Down Expand Up @@ -2390,13 +2390,13 @@ fit.gpd.xts <- function( x, initial = NULL, threshold = NULL,
res.optim$control$hessian[ 1 ] ),
silent = silent )
## Augment the result again to ensure compatibility
if ( class( error.covariance ) != "try-error" ){
if ( any( class( error.covariance ) != "try-error" ) ){
dummy.matrix <- matrix( rep( 0, 4 ), nrow = 2, ncol = 2 )
dummy.matrix[ 1 ] <- error.covariance
error.covariance <- dummy.matrix
}
}
if ( class( error.covariance ) == "try-error" ||
if ( any( class( error.covariance ) == "try-error" ) ||
error.estimation == "MC" ||
any( is.nan( res.optim$control$hessian ) ) ){
parameter.estimate <- res.optim$par
Expand All @@ -2422,7 +2422,7 @@ fit.gpd.xts <- function( x, initial = NULL, threshold = NULL,
control.outer = list( trace = FALSE,
method = "Nelder-Mead" ),
x.in = yy, model = "gpd" )$par ) ) )
if ( class( samples.fit ) == "try-error" ){
if ( any( class( samples.fit ) == "try-error" ) ){
errors <- c( NaN, NaN, NaN )
} else {
errors <- data.frame(
Expand Down Expand Up @@ -2953,13 +2953,13 @@ fit.gpd.default <- function( x, initial = NULL, threshold = NULL,
res.optim$control$hessian[ 1 ] ),
silent = silent )
## Augment the result again to ensure compatibility
if ( class( error.covariance ) != "try-error" ){
if ( any( class( error.covariance ) != "try-error" ) ){
dummy.matrix <- matrix( rep( 0, 4 ), nrow = 2, ncol = 2 )
dummy.matrix[ 1 ] <- error.covariance
error.covariance <- dummy.matrix
}
}
if ( class( error.covariance ) == "try-error" ||
if ( any( class( error.covariance ) == "try-error" ) ||
error.estimation == "MC" ||
any( is.nan( res.optim$control$hessian ) ) ){
parameter.estimate <- res.optim$par
Expand All @@ -2984,7 +2984,7 @@ fit.gpd.default <- function( x, initial = NULL, threshold = NULL,
control.outer = list( trace = FALSE,
method = "Nelder-Mead" ),
x.in = yy, model = "gpd" )$par ) ) )
if ( class( samples.fit ) == "try-error" ){
if ( any( class( samples.fit ) == "try-error" ) ){
errors <- c( NaN, NaN, NaN )
} else {
errors <- data.frame(
Expand Down Expand Up @@ -3615,7 +3615,7 @@ likelihood.initials <- function( x, model = c( "gev", "gpd" ),
## extRemes:::initializer.lmoments function
lambda <- try( Lmoments::Lmoments( x ),
silent = TRUE )
if ( class( lambda ) == "try-error" ){
if ( any( class( lambda ) == "try-error" ) ){
initial.lmom <- c( Inf, Inf, Inf )
} else {
tau3 <- lambda[ 3 ]/ lambda[ 2 ]
Expand All @@ -3635,7 +3635,7 @@ likelihood.initials <- function( x, model = c( "gev", "gpd" ),
## Linux principle), I will use the interior of the
## extRemes:::initializer.lmoments function
lambda <- try( Lmoments::Lmoments( x ), silent = TRUE )
if ( class( lambda ) == "try-error" ){
if ( any( class( lambda ) == "try-error" ) ){
initial.lmom <- c( Inf, Inf, Inf )
} else {
tau2 <- lambda[ 2 ]/ lambda[ 1 ]
Expand Down
6 changes: 3 additions & 3 deletions R/utils.R
Original file line number Diff line number Diff line change
Expand Up @@ -29,11 +29,11 @@ print.climex.fit.gev <- function( x, ... ){
##' @author Philipp Mueller
summary.climex.fit.gev <- function( object, ... ){
cat( "\n" )
cat( paste( length( object$x ), "block maxima fitted using then " ) )
if ( object$control$error.estimation != "none" ){
cat( paste( " Errors using",
object$control$error.estimation, "approach." ) )
cat( paste( "Errors using",
object$control$error.estimation, "approach.\n\n" ) )
}
cat( paste( length( object$x ), "block maxima fitted." ) )
cat( "\n\n" )
cat( "\t\tFunction evaluations:\n" )
print( data.frame( function.eval = as.numeric( object$counts[ 1 ] ),
Expand Down
21 changes: 15 additions & 6 deletions tests/testthat/test_eva.R
Original file line number Diff line number Diff line change
Expand Up @@ -311,6 +311,7 @@ test_that( "return.level get GP error estimation right for MLE", {
)$error ),
c( 3.71517331, 9.08015755 ) )
})

test_that( "return.level get the error estimation right for MC", {
set.seed( 123 )
expect_equal( as.numeric(
Expand Down Expand Up @@ -347,28 +348,32 @@ test_that( "return.level get the error estimation right for MC", {
error.estimation = "MC", threshold = 29,
monte.carlo.sample.size = 10 ) )
})

test_that( "return.level get the error estimation right for bootstrap", {
set.seed( 123 )
expect_equal( as.numeric(
return.level( x.block.fit,
return.period = c( 10, 100, 332 ),
error.estimation = "bootstrap",
bootstrap.sample.size = 10 )$error ),
c( 0.104627306, 0.273167480, 0.358395056 ) )
c( 0.1785051, 0.4003212, 0.5322032 ),
tolerance = 1e-6 )
set.seed( 123 )
expect_equal( as.numeric(
return.level( fit.gev( temp.potsdam, blocking = TRUE,
extreme.type = "min", silent = TRUE ),
return.period = c( 10, 50 ),
bootstrap.sample.size = 10,
error.estimation = "bootstrap" )$error ),
c( 0.304337871, 0.390096183 ) )
c( 0.2640825, 0.3143437 ),
tolerance = 1e-6 )
set.seed( 123 )
expect_equal( as.numeric(
return.level( x.thresh.fit, return.period = 42,
error.estimation = "bootstrap", threshold = 29,
bootstrap.sample.size = 10 )$error ),
0.185924244 )
0.1108912,
tolerance = 1e-6 )
set.seed( 123 )
expect_equal( as.numeric(
return.level( fit.gpd( temp.potsdam, thresholding = TRUE,
Expand All @@ -377,8 +382,10 @@ test_that( "return.level get the error estimation right for bootstrap", {
return.period = c( 10, 50 ),
bootstrap.sample.size = 10,
error.estimation = "bootstrap" )$error ),
c( 0.345277289, 0.573791290 ) )
c( 0.4137593, 0.4658717 ),
tolerance = 1e-6 )
})

test_that( "return.level.climex.fit.gev yield equivalent results for minima and maxima", {
expect_equal(
climex::return.level(
Expand Down Expand Up @@ -585,7 +592,8 @@ test_that( "the calculation of the upper limit does work", {
set.seed( 2314 )
expect_equal(
upper.limit( x.block.fit, error.estimation = "bootstrap" )$error,
1.09028119 )
1.184065,
tolerance = 1e-6 )
expect_equal(
upper.limit( x.thresh.fit, error.estimation = "MLE" )$error,
0.358538454 )
Expand All @@ -596,7 +604,8 @@ test_that( "the calculation of the upper limit does work", {
set.seed( 2314 )
expect_equal(
upper.limit( x.thresh.fit, error.estimation = "bootstrap" )$error,
0.388303764 ) } )
0.3307957,
tolerance = 1e-6 ) } )

test_that( "upper.limit does only work for Weibull-typed data", {
set.seed( 2231 )
Expand Down
14 changes: 8 additions & 6 deletions tests/testthat/test_fit.R
Original file line number Diff line number Diff line change
Expand Up @@ -142,8 +142,8 @@ test_that( "fit.gev's error estimation works", {
error.estimation = "bootstrap",
return.period = c( 100, 200 ),
bootstrap.sample.size = 10 )$se ),
c( 0.1586051250, 0.0740720149, 0.0523628935, 0.2731674804,
0.3238840494 ) )
c( 0.13234313, 0.09495922, 0.09392357, 0.40032124, 0.47744557 ),
tolerance = 1e-6 )
expect_equal(
as.numeric( climex::fit.gev( temp.potsdam, blocking = TRUE,
error.estimation = "MLE",
Expand All @@ -168,8 +168,8 @@ test_that( "fit.gev's error estimation works", {
extreme.type = "min", silent = TRUE,
return.period = c( 100, 200 ),
bootstrap.sample.size = 10 )$se ),
c( 0.3263569489, 0.2585539867, 0.0450737494, 0.4656176707,
0.5520527130 ) )
c( 0.40302692, 0.15256461, 0.04739434, 0.41928855, 0.53768576 ),
tolerance = 1e-6 )
})

test_that( "fit.gev yield equivalent results for minima and maxima", {
Expand Down Expand Up @@ -389,7 +389,8 @@ test_that( "fit.gpd's error estimation works", {
return.period = c( 100, 200 ), silent = TRUE,
total.length = length( temp.potsdam ),
bootstrap.sample.size = 10 )$se ),
c( 5.88442402e-01, 6.58027664e-07, 6.11622465e-01, 6.15380493e-01 ) )
c( 6.091499e-01, 2.295979e-06, 6.331553e-01, 6.370458e-01 ),
tolerance = 1e-6 )
set.seed( 123 )
expect_equal( as.numeric(
climex::fit.gpd( temp.potsdam, thresholding = TRUE,
Expand All @@ -398,7 +399,8 @@ test_that( "fit.gpd's error estimation works", {
return.period = c( 100, 200 ),
bootstrap.sample.size = 10,
total.length = length( temp.potsdam ) )$se ),
c( 0.593621431, 0.115000002, 0.494453578, 0.719987549 ) )
c( 0.43555351, 0.06157277, 0.45968648, 0.50308282 ),
tolerance = 1e-6 )
})

test_that( "fit.gpd's threshold argument affect the result the way it is supposed to", {
Expand Down

0 comments on commit 3a11d41

Please sign in to comment.