add dot(x, A, y)
for sparse matrices
#4298
Annotations
1 warning
../../../.julia/packages/Documenter/bYYzK/src/Utilities/Utilities.jl#L34
2349 docstrings not included in the manual:
is_coprime :: Tuple{NfAbsOrdIdl, NfAbsOrdIdl}
canonical_divisor :: Tuple{AbstractAlgebra.Generic.FunctionField}
kernel_basis :: Union{Tuple{MatElem{T}}, Tuple{T}, Tuple{MatElem{T}, Symbol}} where T<:FieldElem
hensel_qf :: Union{Tuple{T}, Tuple{T, T, Any, Any, Any}} where T<:Union{ZZModMatrix, zzModMatrix}
nullspace_right_rational :: Tuple{ZZMatrix}
isprincipal_non_maximal
_is_isotropic_with_vector_mod4 :: Tuple{Any}
is_short_weierstrass_model :: Tuple{EllCrv}
Zgenera
AbsLat
isdivisible
genus_field :: Tuple{ClassField}
zzModRing
tanpi :: Tuple{qqbar}
cycle :: Tuple{QuadBin{ZZRingElem}}
is_reduced :: Tuple{QuadBin{ZZRingElem}}
FqNmodRelSeriesRing
issmooth
fmma! :: NTuple{5, ZZRingElem}
FqNmodPolyRing
hadamard :: Tuple{ZZMatrixSpace}
kummer_generator_of_local_unramified_quadratic_extension :: Tuple{Any}
istorsion_unit
is_isometric_with_isometry :: Union{Tuple{M}, Tuple{F}, Tuple{Hecke.QuadSpace{F, M}, Hecke.QuadSpace{F, M}}} where {F, M}
FpField
setunion :: Union{Tuple{RealFieldElem, RealFieldElem}, Tuple{RealFieldElem, RealFieldElem, Int64}}
setunion :: Tuple{arb, arb}
local_factor :: Tuple{HermLat, Any}
evaluate2 :: Tuple{acb_poly, acb}
evaluate2 :: Union{Tuple{ComplexPoly, ComplexFieldElem}, Tuple{ComplexPoly, ComplexFieldElem, Int64}}
evaluate2 :: Union{Tuple{RealPoly, RealFieldElem}, Tuple{RealPoly, RealFieldElem, Int64}}
evaluate2 :: Tuple{arb_poly, arb}
is_conjugate :: Tuple{ZZMatrix, ZZMatrix}
unramified_completion :: Union{Tuple{AnticNumberField, NfOrdIdl}, Tuple{AnticNumberField, NfOrdIdl, Int64}}
naive_height :: Union{Tuple{EllCrvPt{QQFieldElem}}, Tuple{EllCrvPt{QQFieldElem}, Int64}}
naive_height :: Union{Tuple{EllCrvPt{nf_elem}}, Tuple{EllCrvPt{nf_elem}, Int64}}
regulator_iwasawa :: Union{Tuple{T}, Tuple{Vector{T}, qAdicConj}, Tuple{Vector{T}, qAdicConj, Int64}} where T<:Union{FacElem{nf_elem, AnticNumberField}, nf_elem}
fmms! :: NTuple{5, ZZRingElem}
next_signed_minimal :: Tuple{QQFieldElem}
splitting_field :: Tuple{PolyRingElem{nf_elem}}
splitting_field :: Tuple{ZZPolyRingElem}
fq_abs_series
components :: Tuple{Type{Field}, Hecke.AbsAlgAss}
lll_gram_with_transform :: Union{Tuple{ZZMatrix}, Tuple{ZZMatrix, lll_ctx}}
induce_action :: Tuple{Vector{NfOrdIdl}, Map}
FqMatrix
lattice :: Tuple{Hecke.JorDec}
lattice :: Tuple{Hecke.QuadSpace{QQField, QQMatrix}, MatElem{<:Union{Integer, QQFieldElem, ZZRingElem, Rational}}}
lattice :: Tuple{Hecke.ModAlgAss{QQField}, Hecke.AlgAssAbsOrd, MatElem}
cansolve :: Tuple{ZZMatrix, ZZMatrix}
factor :: Tuple{ZZRingElem}
istotally_real
support :: Tuple{Divisor}
fq_default_abs_series
GFPAbsSeriesRing
set_assert_level
is_probable_prime :: Tuple{ZZRingElem}
factor_absolute :: Tuple{QQMPolyRingElem}
discriminant_group :: Tuple{ZZGenus}
isdivisible2
codifferent :: Tuple{NfAbsOrd}
codifferent :: Tuple{Hecke.GenOrd}
gcd_sircana :: Union{Tuple{T}, Tuple{S}, Tuple{PolyRingElem{T}, PolyRingElem{T}}} where {S<:Union{Integer, ZZRingElem}, T<:ResElem{S}}
rand_bits :: Tuple{ZZRing, Int64}
rand_bits :: Tuple{QQField, Int64}
islocally_isomorphic
FqPolyRepField
zeros :: Tuple{ZZPolyRingElem}
primary_decomposition :: Union{Tuple{Hecke.AlgAssAbsOrdIdl}, Tuple{Hecke.AlgAssAbsOrdIdl, Hecke.AlgAssAbsOrd}}
restrict_scalars :: Tuple{Hecke.AbsAlgAss{nf_elem}, NfToNfMor}
restrict_scalars :: Union{Tuple{AbstractSpace, QQField}, Tuple{AbstractSpace, QQField, FieldElem}}
restrict_scalars :: Union{Tuple{T}, Tuple{Hecke.AbsAlgAss{T}, Field}} where T
restrict_scalars :: Union{Tuple{AbstractLat, QQField}, Tuple{AbstractLat, QQField, FieldElem}}
restrict_scalars :: Tuple{AbstractLat, AbstractSpaceRes}
fmpz
precision :: Tuple{padic}
precision :: Tuple{Type{Balls}}
precision :: Tuple{qadic}
precision :: Tuple{ZZLaurentSeriesRingElem}
fq_nmod_poly
has_basis_
|
The logs for this run have expired and are no longer available.
Loading