Fix Jordan normal form #4346
Triggered via pull request
November 9, 2023 13:13
Status
Failure
Total duration
3h 4m 52s
Artifacts
–
CI.yml
on: pull_request
Documentation
12m 7s
Matrix: test
Annotations
2 errors and 1 warning
test (nightly, ubuntu-latest)
The runner has received a shutdown signal. This can happen when the runner service is stopped, or a manually started runner is canceled.
|
test (nightly, ubuntu-latest)
The operation was canceled.
|
Documentation:
../../../.julia/packages/Documenter/bYYzK/src/Utilities/Utilities.jl#L34
2353 docstrings not included in the manual:
local_mass :: Tuple{HermLat}
pselmer_group :: Tuple{Int64, Vector{NfOrdIdl}}
maximal_submodules :: Union{Tuple{Hecke.ModAlgAss{S, T, V}}, Tuple{V}, Tuple{T}, Tuple{S}, Tuple{Hecke.ModAlgAss{S, T, V}, Int64}, Tuple{Hecke.ModAlgAss{S, T, V}, Int64, Any}} where {S, T, V}
formal_log :: Union{Tuple{EllCrv}, Tuple{EllCrv, Int64}}
is_less_abs_imag :: Tuple{qqbar, qqbar}
reduction_with_transformation :: Tuple{QuadBin{ZZRingElem}}
_make_legal :: Tuple{nf_elem, NfOrdIdl}
is_complex :: Tuple{InfPlc}
reduce :: Union{Tuple{T}, Tuple{SMat{T}, SRow{T}}} where T
reduce :: Union{Tuple{T}, Tuple{SMat{T}, SRow{T}, T}} where T
ismodular
subfield :: Tuple{NumField, Vector{<:NumFieldElem}}
cos_minpoly :: Tuple{Int64, ZZPolyRingElem}
_p_adic_symbol :: Tuple{ZZMatrix, ZZRingElem, Int64}
is_uinf :: Tuple{ca}
is_simplified_model :: Tuple{EllCrv}
push_through_isogeny :: Tuple{Isogeny, RingElem}
fq_nmod
combination :: Tuple{Hecke.MPolyFact.RootCtx}
composition_factors_with_multiplicity :: Union{Tuple{Hecke.ModAlgAss{S, T, V}}, Tuple{V}, Tuple{T}, Tuple{S}} where {S, T, V}
dim_radical :: Tuple{Hecke.QuadSpaceCls}
isindefinite
codifferent :: Tuple{Hecke.GenOrd}
codifferent :: Tuple{NfAbsOrd}
_isotropic_subspace :: Tuple{Hecke.QuadSpace{QQField, QQMatrix}}
NmodPolyRing
is_perfect_power :: Tuple{ZZRingElem}
istriangular
divexact! :: Tuple{AbstractAlgebra.Generic.Mat{nf_elem}, ZZRingElem}
index :: Tuple{NfAbsOrd}
index :: Tuple{ZZLat, ZZLat}
isprime_power
gfp_fmpz_mpoly
hom :: Tuple{Vector{GrpAbFinGenElem}, Vector{GrpAbFinGenElem}}
hom :: Tuple{TorQuadModule, TorQuadModule, Vector{TorQuadModuleElem}}
hom :: Tuple{GrpAbFinGen, Vector{GrpAbFinGenElem}}
hom :: Tuple{TorQuadModule, TorQuadModule, ZZMatrix}
hom :: Tuple{GrpAbFinGen, GrpAbFinGen, Vector{<:Map{GrpAbFinGen, GrpAbFinGen}}}
hom :: Tuple{GrpAbFinGen, GrpAbFinGen, Matrix{<:Map{GrpAbFinGen, GrpAbFinGen}}}
ismaximal_known_and_maximal
local_genera_quadratic
iseisenstein_polynomial
ZZModPolyRingElem
cyclotomic_field_as_cm_extension :: Tuple{Int64}
FlintIntegerRing
torsion_points_lutz_nagell :: Tuple{EllCrv{QQFieldElem}}
change_coefficient_ring :: Tuple{Ring, Hecke.ModAlgAssLat}
quartic_local_solubility :: NTuple{5, Any}
integral_split :: Tuple{AbstractAlgebra.Generic.FunctionFieldElem, Hecke.GenOrd}
integral_split :: Tuple{Hecke.NfAbsOrdFracIdl}
contains_positive :: Tuple{RealFieldElem}
contains_positive :: Tuple{arb}
is_locally_isomorphic :: Union{Tuple{T}, Tuple{T, T}} where T<:Union{Hecke.NfAbsOrdFracIdl{AnticNumberField, nf_elem}, Hecke.AlgAssAbsOrdIdl, NfAbsOrdIdl}
contains_negative :: Tuple{RealFieldElem}
contains_negative :: Tuple{arb}
Float64 :: Union{Tuple{RealFieldElem}, Tuple{RealFieldElem, RoundingMode}}
Float64 :: Union{Tuple{arb}, Tuple{arb, RoundingMode}}
eisenstein_g :: Tuple{Int64, acb}
eisenstein_g :: Union{Tuple{Int64, ComplexFieldElem}, Tuple{Int64, ComplexFieldElem, Int64}}
isautomorphisms_known
maximal_order :: Union{Tuple{Hecke.AbsAlgAss{T}}, Tuple{T}} where T<:NumFieldElem
maximal_order :: Union{Tuple{Hecke.AlgAssRelOrd{S, T, U}}, Tuple{U}, Tuple{T}, Tuple{S}} where {S, T, U}
is_locally_free :: Tuple{Hecke.AlgAssRelOrd, Hecke.AlgAssRelOrdIdl, Union{NfAbsOrdIdl, Hecke.NfRelOrdIdl}}
is_locally_free :: Tuple{Hecke.AlgAssAbsOrd, Hecke.AlgAssAbsOrdIdl, Union{Int64, ZZRingElem}}
is_locally_free :: Tuple{Hecke.AlgAssAbsOrdIdl, Union{Int64, ZZRingElem}}
is_locally_free :: Tuple{Hecke.AlgAssRelOrdIdl, Union{NfAbsOrdIdl, Hecke.NfRelOrdIdl}}
rsqrt :: Union{Tuple{ComplexFieldElem}, Tuple{ComplexFieldElem, Int64}}
rsqrt :: Tuple{arb}
rsqrt :: Union{Tuple{RealFieldElem}, Tuple{RealFieldElem, Int64}}
rsqrt :: Tuple{acb}
sqrt :: Tuple{fpAbsPowerSeriesRingElem}
sqrt :: Tuple{ca}
sqrt :: Tuple{FpRelPowerSeriesRingElem}
sqrt :: Tuple{fpRelPowerSeriesRingElem}
|