Skip to content

Fix Jordan normal form #4346

Fix Jordan normal form

Fix Jordan normal form #4346

Triggered via pull request November 9, 2023 13:13
Status Failure
Total duration 3h 4m 52s
Artifacts

CI.yml

on: pull_request
Matrix: test
Fit to window
Zoom out
Zoom in

Annotations

2 errors and 1 warning
test (nightly, ubuntu-latest)
The runner has received a shutdown signal. This can happen when the runner service is stopped, or a manually started runner is canceled.
test (nightly, ubuntu-latest)
The operation was canceled.
Documentation: ../../../.julia/packages/Documenter/bYYzK/src/Utilities/Utilities.jl#L34
2353 docstrings not included in the manual: local_mass :: Tuple{HermLat} pselmer_group :: Tuple{Int64, Vector{NfOrdIdl}} maximal_submodules :: Union{Tuple{Hecke.ModAlgAss{S, T, V}}, Tuple{V}, Tuple{T}, Tuple{S}, Tuple{Hecke.ModAlgAss{S, T, V}, Int64}, Tuple{Hecke.ModAlgAss{S, T, V}, Int64, Any}} where {S, T, V} formal_log :: Union{Tuple{EllCrv}, Tuple{EllCrv, Int64}} is_less_abs_imag :: Tuple{qqbar, qqbar} reduction_with_transformation :: Tuple{QuadBin{ZZRingElem}} _make_legal :: Tuple{nf_elem, NfOrdIdl} is_complex :: Tuple{InfPlc} reduce :: Union{Tuple{T}, Tuple{SMat{T}, SRow{T}}} where T reduce :: Union{Tuple{T}, Tuple{SMat{T}, SRow{T}, T}} where T ismodular subfield :: Tuple{NumField, Vector{<:NumFieldElem}} cos_minpoly :: Tuple{Int64, ZZPolyRingElem} _p_adic_symbol :: Tuple{ZZMatrix, ZZRingElem, Int64} is_uinf :: Tuple{ca} is_simplified_model :: Tuple{EllCrv} push_through_isogeny :: Tuple{Isogeny, RingElem} fq_nmod combination :: Tuple{Hecke.MPolyFact.RootCtx} composition_factors_with_multiplicity :: Union{Tuple{Hecke.ModAlgAss{S, T, V}}, Tuple{V}, Tuple{T}, Tuple{S}} where {S, T, V} dim_radical :: Tuple{Hecke.QuadSpaceCls} isindefinite codifferent :: Tuple{Hecke.GenOrd} codifferent :: Tuple{NfAbsOrd} _isotropic_subspace :: Tuple{Hecke.QuadSpace{QQField, QQMatrix}} NmodPolyRing is_perfect_power :: Tuple{ZZRingElem} istriangular divexact! :: Tuple{AbstractAlgebra.Generic.Mat{nf_elem}, ZZRingElem} index :: Tuple{NfAbsOrd} index :: Tuple{ZZLat, ZZLat} isprime_power gfp_fmpz_mpoly hom :: Tuple{Vector{GrpAbFinGenElem}, Vector{GrpAbFinGenElem}} hom :: Tuple{TorQuadModule, TorQuadModule, Vector{TorQuadModuleElem}} hom :: Tuple{GrpAbFinGen, Vector{GrpAbFinGenElem}} hom :: Tuple{TorQuadModule, TorQuadModule, ZZMatrix} hom :: Tuple{GrpAbFinGen, GrpAbFinGen, Vector{<:Map{GrpAbFinGen, GrpAbFinGen}}} hom :: Tuple{GrpAbFinGen, GrpAbFinGen, Matrix{<:Map{GrpAbFinGen, GrpAbFinGen}}} ismaximal_known_and_maximal local_genera_quadratic iseisenstein_polynomial ZZModPolyRingElem cyclotomic_field_as_cm_extension :: Tuple{Int64} FlintIntegerRing torsion_points_lutz_nagell :: Tuple{EllCrv{QQFieldElem}} change_coefficient_ring :: Tuple{Ring, Hecke.ModAlgAssLat} quartic_local_solubility :: NTuple{5, Any} integral_split :: Tuple{AbstractAlgebra.Generic.FunctionFieldElem, Hecke.GenOrd} integral_split :: Tuple{Hecke.NfAbsOrdFracIdl} contains_positive :: Tuple{RealFieldElem} contains_positive :: Tuple{arb} is_locally_isomorphic :: Union{Tuple{T}, Tuple{T, T}} where T<:Union{Hecke.NfAbsOrdFracIdl{AnticNumberField, nf_elem}, Hecke.AlgAssAbsOrdIdl, NfAbsOrdIdl} contains_negative :: Tuple{RealFieldElem} contains_negative :: Tuple{arb} Float64 :: Union{Tuple{RealFieldElem}, Tuple{RealFieldElem, RoundingMode}} Float64 :: Union{Tuple{arb}, Tuple{arb, RoundingMode}} eisenstein_g :: Tuple{Int64, acb} eisenstein_g :: Union{Tuple{Int64, ComplexFieldElem}, Tuple{Int64, ComplexFieldElem, Int64}} isautomorphisms_known maximal_order :: Union{Tuple{Hecke.AbsAlgAss{T}}, Tuple{T}} where T<:NumFieldElem maximal_order :: Union{Tuple{Hecke.AlgAssRelOrd{S, T, U}}, Tuple{U}, Tuple{T}, Tuple{S}} where {S, T, U} is_locally_free :: Tuple{Hecke.AlgAssRelOrd, Hecke.AlgAssRelOrdIdl, Union{NfAbsOrdIdl, Hecke.NfRelOrdIdl}} is_locally_free :: Tuple{Hecke.AlgAssAbsOrd, Hecke.AlgAssAbsOrdIdl, Union{Int64, ZZRingElem}} is_locally_free :: Tuple{Hecke.AlgAssAbsOrdIdl, Union{Int64, ZZRingElem}} is_locally_free :: Tuple{Hecke.AlgAssRelOrdIdl, Union{NfAbsOrdIdl, Hecke.NfRelOrdIdl}} rsqrt :: Union{Tuple{ComplexFieldElem}, Tuple{ComplexFieldElem, Int64}} rsqrt :: Tuple{arb} rsqrt :: Union{Tuple{RealFieldElem}, Tuple{RealFieldElem, Int64}} rsqrt :: Tuple{acb} sqrt :: Tuple{fpAbsPowerSeriesRingElem} sqrt :: Tuple{ca} sqrt :: Tuple{FpRelPowerSeriesRingElem} sqrt :: Tuple{fpRelPowerSeriesRingElem}