Bump Aqua to 0.8 and use defaults #4357
Triggered via pull request
November 16, 2023 16:57
Status
Failure
Total duration
1h 35m 49s
Artifacts
–
CI.yml
on: pull_request
Documentation
9m 36s
Matrix: test
Annotations
2 errors and 1 warning
test (nightly, ubuntu-latest)
The runner has received a shutdown signal. This can happen when the runner service is stopped, or a manually started runner is canceled.
|
test (nightly, ubuntu-latest)
The operation was canceled.
|
Documentation:
../../../.julia/packages/Documenter/bYYzK/src/Utilities/Utilities.jl#L34
2324 docstrings not included in the manual:
FmpqPolyRing
is_totally_isotropic :: Tuple{TorQuadModule}
ismaximal_integral
canonical_height :: Union{Tuple{EllCrvPt{nf_elem}}, Tuple{EllCrvPt{nf_elem}, Any}}
canonical_height :: Union{Tuple{EllCrvPt{QQFieldElem}}, Tuple{EllCrvPt{QQFieldElem}, Any}}
isembedded
issmooth!
exp_integral_ei :: Union{Tuple{ComplexFieldElem}, Tuple{ComplexFieldElem, Int64}}
exp_integral_ei :: Tuple{acb}
hilbert_class_polynomial :: Tuple{Int64, ZZPolyRing}
const_euler :: Tuple{ArbField}
const_euler :: Tuple{CalciumField}
const_euler :: Union{Tuple{RealField}, Tuple{RealField, Int64}}
elem_in_algebra :: Union{Tuple{Hecke.AlgAssRelOrdElem{S, T, U}}, Tuple{U}, Tuple{T}, Tuple{S}} where {S, T, U}
erf :: Tuple{ca}
erf :: Union{Tuple{ComplexFieldElem}, Tuple{ComplexFieldElem, Int64}}
erf :: Tuple{acb}
asinpi :: Tuple{qqbar}
QQMatrix
isinf :: Tuple{ca}
has_principal_generator_1_mod_m :: Union{Tuple{Union{FacElem{NfOrdIdl, Hecke.NfAbsOrdIdlSet{AnticNumberField, nf_elem}}, NfOrdIdl}, NfOrdIdl}, Tuple{Union{FacElem{NfOrdIdl, Hecke.NfAbsOrdIdlSet{AnticNumberField, nf_elem}}, NfOrdIdl}, NfOrdIdl, Vector{<:InfPlc}}}
phereditary_overorder :: Union{Tuple{T}, Tuple{Hecke.AlgAssRelOrd, Union{NfAbsOrdIdl, Hecke.NfRelOrdIdl}}} where T
schur_index :: Tuple{Hecke.AbsAlgAss{QQFieldElem}, Union{Integer, ZZRingElem, IntExt}}
rational_reconstruction2 :: Tuple{AbstractAlgebra.Generic.Mat{nf_elem}, ZZRingElem}
root_of_unity_as_args :: Tuple{qqbar}
fqPolyRepField
exp_pi_i :: Tuple{qqbar}
AddOverfield! :: Union{Tuple{T}, Tuple{T, Nemo.FinFieldMorphism{T, T}}} where T<:FinField
const_catalan :: Tuple{ArbField}
const_catalan :: Union{Tuple{RealField}, Tuple{RealField, Int64}}
iseq
fpMPolyRingElem
isdiagonal
is_positive :: Tuple{RealFieldElem}
is_positive :: Tuple{arb}
kernel_basis :: Union{Tuple{MatElem{T}}, Tuple{T}, Tuple{MatElem{T}, Symbol}} where T<:FieldElem
ideal_from_lattice_gens :: Tuple{Hecke.AbsAlgAss{QQFieldElem}, Vector{<:Hecke.AbsAlgAssElem{QQFieldElem}}}
ideal_from_lattice_gens :: Union{Tuple{T}, Tuple{S}, Tuple{S, Hecke.AlgAssAbsOrd{S, T}, Vector{T}}, Tuple{S, Hecke.AlgAssAbsOrd{S, T}, Vector{T}, Symbol}} where {S<:Hecke.AbsAlgAss{QQFieldElem}, T<:Hecke.AbsAlgAssElem{QQFieldElem}}
ideal_from_lattice_gens :: Union{Tuple{S}, Tuple{Hecke.AbsAlgAss{S}, Vector{<:Hecke.AbsAlgAssElem{S}}}} where S<:NumFieldElem
ideal_from_lattice_gens :: Union{Tuple{U}, Tuple{T}, Tuple{S}, Tuple{Hecke.AbsAlgAss{S}, Hecke.AlgAssRelOrd{S, T, U}, Vector{<:Hecke.AbsAlgAssElem{S}}}, Tuple{Hecke.AbsAlgAss{S}, Hecke.AlgAssRelOrd{S, T, U}, Vector{<:Hecke.AbsAlgAssElem{S}}, Symbol}} where {S<:NumFieldElem, T, U}
squarefree_part :: Tuple{ZZRingElem}
SRowSpace
bound_inf_norm :: Tuple{RealMat}
bound_inf_norm :: Tuple{arb_mat}
bound_inf_norm :: Tuple{ComplexMat}
bound_inf_norm :: Tuple{acb_mat}
fmpq_abs_series
var :: Tuple{AnticNumberField}
local_genera_quadratic
tstbit :: Tuple{ZZRingElem, Int64}
factor :: Tuple{ZZRing, QQFieldElem}
factor :: Tuple{NfAbsOrdIdl}
factor :: Tuple{Hecke.NfAbsOrdFracIdl}
factor :: Tuple{Hecke.AlgAssAbsOrdIdl}
factor :: Tuple{PolyRingElem{nf_elem}}
factor :: Tuple{PolyRingElem{NfAbsNSElem}}
factor :: Tuple{AnticNumberField, QQPolyRingElem}
division_polynomial :: Union{Tuple{S}, Tuple{EllCrv, S}, Tuple{EllCrv, S, Any}, Tuple{EllCrv, S, Any, Any}} where S<:Union{Integer, ZZRingElem}
FpPolyRing
locally_free_class_group :: Union{Tuple{Hecke.AlgAssAbsOrd}, Tuple{T}, Tuple{Hecke.AlgAssAbsOrd, Symbol}, Tuple{Hecke.AlgAssAbsOrd, Symbol, Type{Val{T}}}} where T
reduction :: Tuple{QuadBin{ZZRingElem}}
reduction :: Tuple{Hecke.ModAlgAssLat, Union{Integer, ZZRingElem}}
_brown_indecomposable :: Tuple{MatElem, ZZRingElem}
elem_order_bsgs :: Union{Tuple{EllCrvPt{T}}, Tuple{T}} where T<:FinFieldElem
isnilpotent
isprincipal_fac_elem
fmpz_mod_abs_series
^ :: Tuple{Hecke.AbsAl
|