Skip to content

Commit

Permalink
Update to latest AA, Nemo
Browse files Browse the repository at this point in the history
- CyclotomicRealSubfield -> cyclotomic_real_subfield
- isconstant -> is_constant
  • Loading branch information
fingolfin committed Nov 23, 2023
1 parent 1aab0d4 commit 94b0d03
Show file tree
Hide file tree
Showing 12 changed files with 31 additions and 31 deletions.
6 changes: 3 additions & 3 deletions Project.toml
Original file line number Diff line number Diff line change
@@ -1,6 +1,6 @@
name = "Hecke"
uuid = "3e1990a7-5d81-5526-99ce-9ba3ff248f21"
version = "0.22.8"
version = "0.23.0-DEV"

[deps]
AbstractAlgebra = "c3fe647b-3220-5bb0-a1ea-a7954cac585d"
Expand Down Expand Up @@ -28,7 +28,7 @@ GAPExt = "GAP"
PolymakeExt = "Polymake"

[compat]
AbstractAlgebra = "^0.33.0"
AbstractAlgebra = "^0.34"
Dates = "1.6"
Distributed = "1.6"
GAP = "0.9.6, 0.10"
Expand All @@ -37,7 +37,7 @@ LazyArtifacts = "1.6"
Libdl = "1.6"
LinearAlgebra = "1.6"
Markdown = "1.6"
Nemo = "^0.37.4"
Nemo = "^0.38.1"
Pkg = "1.6"
Polymake = "0.10, 0.11"
Printf = "1.6"
Expand Down
18 changes: 9 additions & 9 deletions docs/src/quad_forms/basics.md
Original file line number Diff line number Diff line change
Expand Up @@ -21,7 +21,7 @@ following spaces for the rest of this section:

```@repl 2
using Hecke # hide
K, a = CyclotomicRealSubfield(7);
K, a = cyclotomic_real_subfield(7);
Kt, t = K["t"];
E, b = number_field(t^2-a*t+1, "b");
Q = quadratic_space(K, K[0 1; 1 0])
Expand Down Expand Up @@ -59,7 +59,7 @@ space $H$:

```@repl 2
using Hecke # hide
K, a = CyclotomicRealSubfield(7);
K, a = cyclotomic_real_subfield(7);
Kt, t = K["t"];
E, b = number_field(t^2-a*t+1, "b");
H = hermitian_space(E, 3);
Expand Down Expand Up @@ -96,7 +96,7 @@ Note that the `is_hermitian` function tests whether the space is non-quadratic.

```@repl 2
using Hecke # hide
K, a = CyclotomicRealSubfield(7);
K, a = cyclotomic_real_subfield(7);
Kt, t = K["t"];
E, b = number_field(t^2-a*t+1, "b");
Q = quadratic_space(K, K[0 1; 1 0]);
Expand All @@ -123,7 +123,7 @@ restrict_scalars(::AbstractSpace, ::QQField, ::FieldElem)

```@repl 2
using Hecke # hide
K, a = CyclotomicRealSubfield(7);
K, a = cyclotomic_real_subfield(7);
Kt, t = K["t"];
E, b = number_field(t^2-a*t+1, "b");
Q = quadratic_space(K, K[0 1; 1 0]);
Expand Down Expand Up @@ -160,7 +160,7 @@ of $O_K$ above $7$, one can get:

```@repl 2
using Hecke # hide
K, a = CyclotomicRealSubfield(7);
K, a = cyclotomic_real_subfield(7);
Q = quadratic_space(K, K[0 1; 1 0]);
OK = maximal_order(K);
p = prime_decomposition(OK, 7)[1][1];
Expand Down Expand Up @@ -196,7 +196,7 @@ embed respectively locally or globally into $Q$ or $H$:

```@repl 2
using Hecke # hide
K, a = CyclotomicRealSubfield(7);
K, a = cyclotomic_real_subfield(7);
Kt, t = K["t"];
E, b = number_field(t^2-a*t+1, "b");
Q = quadratic_space(K, K[0 1; 1 0]);
Expand Down Expand Up @@ -247,7 +247,7 @@ orthogonal_projection(::AbstractSpace, ::MatElem)

```@repl 2
using Hecke # hide
K, a = CyclotomicRealSubfield(7);
K, a = cyclotomic_real_subfield(7);
Kt, t = K["t"];
Q = quadratic_space(K, K[0 1; 1 0]);
orthogonal_complement(Q, matrix(K, 1, 2, [1 0]))
Expand All @@ -268,7 +268,7 @@ is_isotropic(::AbstractSpace, p)

```@repl 2
using Hecke # hide
K, a = CyclotomicRealSubfield(7);
K, a = cyclotomic_real_subfield(7);
Kt, t = K["t"];
E, b = number_field(t^2-a*t+1, "b");
H = hermitian_space(E, 3);
Expand All @@ -295,7 +295,7 @@ is_locally_hyperbolic(::HermSpace, ::NfOrdIdl)

```@repl 2
using Hecke # hide
K, a = CyclotomicRealSubfield(7);
K, a = cyclotomic_real_subfield(7);
Kt, t = K["t"];
E, b = number_field(t^2-a*t+1, "b");
H = hermitian_space(E, 3);
Expand Down
2 changes: 1 addition & 1 deletion docs/src/quad_forms/genusherm.md
Original file line number Diff line number Diff line change
Expand Up @@ -473,7 +473,7 @@ hermitian_genera(::Hecke.NfRel, ::Int, ::Dict{InfPlc, Int}, ::Union{Hecke.NfRelO

```@repl 2
using Hecke # hide
K, a = CyclotomicRealSubfield(8, "a");
K, a = cyclotomic_real_subfield(8, "a");
Kt, t = K["t"];
E, b = number_field(t^2 - a * t + 1);
p = prime_decomposition(maximal_order(K), 2)[1][1];
Expand Down
4 changes: 2 additions & 2 deletions src/LargeField/misc2.jl
Original file line number Diff line number Diff line change
Expand Up @@ -388,7 +388,7 @@ end
#=
Qx,x = polynomial_ring(FlintQQ, "a")
K, a = CyclotomicRealSubfield(1024, "a");
K, a = cyclotomic_real_subfield(1024, "a");
@time fb_int = Hecke.int_fb_max_real(1024, 2^20);
h = Hecke.auto_of_maximal_real(K, 3);
b = [K(1), a]
Expand All @@ -398,7 +398,7 @@ fb_int = FactorBase(ZZRingElem[x for x = vcat(fb_int[1], fb_int[2], fb_int[3])])
@time Hecke.basis_rels_5(b, 600, 10, 5, fb_int)
Qx,x = polynomial_ring(FlintQQ, "a")
K, a = CyclotomicRealSubfield(512, "a");
K, a = cyclotomic_real_subfield(512, "a");
@time fb_int = Hecke.int_fb_max_real(512, 2^18);
h = Hecke.auto_of_maximal_real(K, 3);
b = [K(1), a]
Expand Down
6 changes: 3 additions & 3 deletions src/Misc/Poly.jl
Original file line number Diff line number Diff line change
Expand Up @@ -418,7 +418,7 @@ function n_positive_roots(f::ZZPolyRingElem; multiplicities::Bool = false)
if !multiplicities
ffp = derivative(ff)
g = gcd(ff, ffp)
if isconstant(g)
if is_constant(g)
return _n_positive_roots_sf(f)
else
return n_positive_roots(divexact(ff, g))::Int
Expand Down Expand Up @@ -446,7 +446,7 @@ function _n_positive_roots_sf(f::ZZPolyRingElem)
# Here a = 0
_, f = remove(f, gen(parent(f)))

if isconstant(f)
if is_constant(f)
# f = x^n * a, so no positive root
return 0
end
Expand All @@ -465,7 +465,7 @@ function n_real_roots(f::ZZPolyRingElem)
ff = Hecke.Globals.Qx(f)
ffp = derivative(ff)
g = gcd(ff, ffp)
if isconstant(g)
if is_constant(g)
return _n_real_roots_sf(f)
else
return n_real_roots(divexact(ff, g))::Int
Expand Down
6 changes: 3 additions & 3 deletions src/NumField/NfAbs/Cyclotomic.jl
Original file line number Diff line number Diff line change
Expand Up @@ -10,7 +10,7 @@ conductor, return a generating set for the cyclotomic units of $K$.
# Examples
```jldoctest
julia> K, a = CyclotomicRealSubfield(7);
julia> K, a = cyclotomic_real_subfield(7);
julia> cyclotomic_units_totally_real(K)
3-element Vector{nf_elem}:
Expand Down Expand Up @@ -150,7 +150,7 @@ function cyclotomic_regulator(n::Int, prec::Int; maximal_totally_real::Bool = fa
# If we only care about regulators, this is not a problem, as we
# just have to scale appropriately.
if is_prime(n)
K, = CyclotomicRealSubfield(n, cached = false)
K, = cyclotomic_real_subfield(n, cached = false)
if degree(K) == 1
return regulator(nf_elem[], prec)
end
Expand All @@ -163,7 +163,7 @@ function cyclotomic_regulator(n::Int, prec::Int; maximal_totally_real::Bool = fa
end
else
@assert is_prime_power(n)
K, = CyclotomicRealSubfield(n, cached = false)
K, = cyclotomic_real_subfield(n, cached = false)
cyc = _cyclotomic_units_totally_real_prime_power_conductor(K, n, true)
# cyc is in K(zeta_n)
reg = regulator(cyc[2:end], prec)
Expand Down
2 changes: 1 addition & 1 deletion src/NumField/NfRel/NfRel.jl
Original file line number Diff line number Diff line change
Expand Up @@ -915,7 +915,7 @@ Number field with defining polynomial $ - 1
```
"""
function cyclotomic_field_as_cm_extension(n::Int; cached::Bool = true)
K, a = CyclotomicRealSubfield(n, Symbol("(z_$n + 1//z_$n)"), cached = cached)
K, a = cyclotomic_real_subfield(n, Symbol("(z_$n + 1//z_$n)"), cached = cached)
Kt, t = polynomial_ring(K, "t", cached = false)
E, b = number_field(t^2-a*t+1, "z_$n", cached = cached)
set_attribute!(E, :cyclo, n)
Expand Down
2 changes: 1 addition & 1 deletion test/NfOrd/LinearAlgebra.jl
Original file line number Diff line number Diff line change
Expand Up @@ -179,7 +179,7 @@
@test Hecke._spans_subset_of_pseudohnf(pm, pm, :lowerleft)

# issue 1112
K, a = CyclotomicRealSubfield(8, "a");
K, a = cyclotomic_real_subfield(8, "a");
Kt, t = K["t"];
E, b = number_field(t^2 - a * t + 1, "b");
V = hermitian_space(E, gram_matrix(root_lattice(:E, 8)));
Expand Down
2 changes: 1 addition & 1 deletion test/NumField/Hilbert.jl
Original file line number Diff line number Diff line change
Expand Up @@ -36,7 +36,7 @@
@test quadratic_defect(QQ(1//9),ZZ(3)) == PosInf()

# Test where Magma div(x, y) differs from julia div(x, y) (internally)
K, a = CyclotomicRealSubfield(8, "a") # x^2 - 2
K, a = cyclotomic_real_subfield(8, "a") # x^2 - 2
z = 9278908160780559301//4*a+6561375391013480455//2
w = K(-2)
p = prime_decomposition(maximal_order(K), 2)[1][1]
Expand Down
4 changes: 2 additions & 2 deletions test/NumField/NfAbs/Cyclotomic.jl
Original file line number Diff line number Diff line change
@@ -1,11 +1,11 @@
@testset "Cyclotomic" begin
for q in [7, 7^2, 2^2, 2^3, 2^4]
K, a = CyclotomicRealSubfield(q)
K, a = cyclotomic_real_subfield(q)
v = cyclotomic_units_totally_real(K)
@test length(v) == degree(K) # = unit rank + 1
end

K, a = CyclotomicRealSubfield(7)
K, a = cyclotomic_real_subfield(7)
v = cyclotomic_units_totally_real(K)
# Class number of Q(zeta_7)^+ is one, so the cyclotomic units are the units
@test overlaps(regulator(maximal_order(K)), regulator(v[2:end]))
Expand Down
6 changes: 3 additions & 3 deletions test/QuadForm/Herm/Genus.jl
Original file line number Diff line number Diff line change
Expand Up @@ -421,7 +421,7 @@
#
#############################################################################

K, a = CyclotomicRealSubfield(8, "a")
K, a = cyclotomic_real_subfield(8, "a")
Kt, t = polynomial_ring(K, "t")
L, b = number_field(t^2 - a * t + 1)

Expand Down Expand Up @@ -461,7 +461,7 @@
@test (@inferred representative(G[i])) in G[i]
end

K, a = CyclotomicRealSubfield(8, "a")
K, a = cyclotomic_real_subfield(8, "a")
Kt, t = K["t"]
L, b = number_field(t^2 - a * t + 1)
p = prime_decomposition(maximal_order(K), 2)[1][1]
Expand All @@ -486,7 +486,7 @@
@test all(x -> x in Gs, myG)
@test all(x -> x in myG, Gs)

K, a = CyclotomicRealSubfield(8, "a")
K, a = cyclotomic_real_subfield(8, "a")
Kt, t = K["t"]
L, b = number_field(t^2 - a * t + 1)
rlp = real_places(K)
Expand Down
4 changes: 2 additions & 2 deletions test/QuadForm/Lattices.jl
Original file line number Diff line number Diff line change
Expand Up @@ -110,7 +110,7 @@
M = @inferred Hecke.maximal_integral_lattice(V)
@test Hecke.genus(M, p) == genus(HermLat, L, p, [(-2, 2, 1, 0), (0, 1, 1, 0)])

K, a = CyclotomicRealSubfield(8, "a")
K, a = cyclotomic_real_subfield(8, "a")
Kt, t = K["t"]
E, b = number_field(t^2 - a * t + 1, "b")
p = prime_decomposition(maximal_order(K), 2)[1][1]
Expand Down Expand Up @@ -148,7 +148,7 @@
L = Hecke._to_number_field_lattice(E8)
@test L == dual(L)

K, a = CyclotomicRealSubfield(8, "a")
K, a = cyclotomic_real_subfield(8, "a")
Kt, t = K["t"]
E, b = number_field(t^2 - a * t + 1, "b")
V = hermitian_space(E, gram_matrix(root_lattice(:E, 8)))
Expand Down

0 comments on commit 94b0d03

Please sign in to comment.