Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add constructors for hyperkaehler lattices #1313

Merged
merged 2 commits into from
Dec 9, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 3 additions & 0 deletions docs/src/quad_forms/integer_lattices.md
Original file line number Diff line number Diff line change
Expand Up @@ -38,6 +38,9 @@ root_lattice(::Symbol, ::Int)
hyperbolic_plane_lattice(n::Union{Int64, ZZRingElem})
integer_lattice(S::Symbol, n::Union{Int64, ZZRingElem})
leech_lattice
k3_lattice
mukai_lattice(::Symbol)
hyperkaehler_lattice(::Symbol)
```

### From a genus
Expand Down
170 changes: 169 additions & 1 deletion src/QuadForm/Quad/ZLattices.jl
Original file line number Diff line number Diff line change
Expand Up @@ -4,7 +4,7 @@ export *,+, basis_matrix, ambient_space, base_ring, base_field, root_lattice,
glue_map, overlattice, primitive_closure, is_primitive,
lattice_in_same_ambient_space, maximal_even_lattice, is_maximal_even,
leech_lattice, highest_root, coxeter_number, embed_in_unimodular, irreducible_components,
divisibility, coinvariant_lattice
divisibility, coinvariant_lattice, k3_lattice, mukai_lattice, hyperkaehler_lattice

# scope & verbose scope: :Lattice
@doc raw"""
Expand Down Expand Up @@ -2753,3 +2753,171 @@ function leech_lattice(niemeier_lattice::ZZLat)
return leech_lattice, h*w, h
end

###############################################################################
#
# Hyperkaehler lattices
#
###############################################################################

@doc raw"""
k3_lattice()

Return the integer lattice corresponding to the Beauville-Bogomolov-Fujiki
form associated to a K3 surface.

# Examples
```jldoctest
julia> L = k3_lattice();

julia> is_unimodular(L)
true

julia> signature_tuple(L)
(3, 0, 19)
```
"""
function k3_lattice()
U = QQ[0 1; 1 0]
E8 = -_root_lattice_E(8)
return integer_lattice(; gram = diagonal_matrix(U, U, U, E8, E8))
end

@doc raw"""
mukai_lattice(S::Symbol = :K3; extended::Bool = false)

Return the (extended) Mukai lattice.

If `S == :K3`, it returns the (extended) Mukai lattice associated to
hyperkaehler manifolds which are deformation equivalent to a moduli space
of stable sheaves on a K3 surface.

If `S == :Ab`, it returns the (extended) Mukai lattice associated to
hyperkaehler manifolds which are deformation equivalent to a moduli space
of stable sheaves on an abelian surface.

# Examples
```jldoctest
julia> L = mukai_lattice();

julia> genus(L)
Genus symbol for integer lattices
Signatures: (4, 0, 20)
Local symbol:
Local genus symbol at 2: 1^24

julia> L = mukai_lattice(; extended = true);

julia> genus(L)
Genus symbol for integer lattices
Signatures: (5, 0, 21)
Local symbol:
Local genus symbol at 2: 1^26

julia> L = mukai_lattice(:Ab);

julia> genus(L)
Genus symbol for integer lattices
Signatures: (4, 0, 4)
Local symbol:
Local genus symbol at 2: 1^8

julia> L = mukai_lattice(:Ab; extended = true);

julia> genus(L)
Genus symbol for integer lattices
Signatures: (5, 0, 5)
Local symbol:
Local genus symbol at 2: 1^10
```
"""
function mukai_lattice(S::Symbol = :K3; extended::Bool = false)
@req S in [:K3, :Ab] "Wrong symbol"
U = QQ[0 1; 1 0]
if S == :Ab
extended && return integer_lattice(; gram = diagonal_matrix(U, U, U, U, U))
return integer_lattice(; gram = diagonal_matrix(U, U, U, U))
end

E8 = -_root_lattice_E(8)
!extended && return integer_lattice(; gram = diagonal_matrix(U, U, U, U, E8, E8))
return integer_lattice(; gram = diagonal_matrix(U, U, U, U, U, E8, E8))
end

@doc raw"""
hyperkaehler_lattice(S::Symbol; n::Int = 2)

Return the integer lattice corresponding to the Beauville-Bogomolov-Fujiki
form on a hyperkaehler manifold whose deformation type is determined by `S`
and `n`.

- If `S == :K3` or `S == :Kum`, then `n` must be an integer bigger than 2;
- If `S == :OG6` or `S == :OG10`, the value of `n` has no effect.

# Examples
```jldoctest
julia> L = hyperkaehler_lattice(:Kum; n = 3)
Integer lattice of rank 7 and degree 7
with gram matrix
[0 1 0 0 0 0 0]
[1 0 0 0 0 0 0]
[0 0 0 1 0 0 0]
[0 0 1 0 0 0 0]
[0 0 0 0 0 1 0]
[0 0 0 0 1 0 0]
[0 0 0 0 0 0 -8]

julia> L = hyperkaehler_lattice(:OG6)
Integer lattice of rank 8 and degree 8
with gram matrix
[0 1 0 0 0 0 0 0]
[1 0 0 0 0 0 0 0]
[0 0 0 1 0 0 0 0]
[0 0 1 0 0 0 0 0]
[0 0 0 0 0 1 0 0]
[0 0 0 0 1 0 0 0]
[0 0 0 0 0 0 -2 0]
[0 0 0 0 0 0 0 -2]

julia> L = hyperkaehler_lattice(:OG10);

julia> genus(L)
Genus symbol for integer lattices
Signatures: (3, 0, 21)
Local symbols:
Local genus symbol at 2: 1^-24
Local genus symbol at 3: 1^-23 3^1

julia> L = hyperkaehler_lattice(:K3; n = 3);

julia> genus(L)
Genus symbol for integer lattices
Signatures: (3, 0, 20)
Local symbol:
Local genus symbol at 2: 1^22 4^1_7
```
"""
function hyperkaehler_lattice(S::Symbol; n::Int = 2)
@req S in [:K3, :Kum, :OG10, :OG6] "Wrong symbol for deformation type"

U = QQ[0 1; 1 0]
if S == :OG6
k = QQ[-2 0; 0 -2]
return integer_lattice(; gram = diagonal_matrix(U, U, U, k))
elseif S == :Kum
@req n >= 2 "n must be a positive integer bigger than 1"
k = QQ[-2-2*n; ]
return integer_lattice(; gram = diagonal_matrix(U, U, U, k))
end

E8 = -_root_lattice_E(8)
if S == :OG10
k = -_root_lattice_A(2)
return integer_lattice(; gram = diagonal_matrix(U, U, U, E8, E8, k))
else
@assert S == :K3
@req n >= 2 "n must be a positive integer bigger than 1"
k = QQ[2-2*n; ]
return integer_lattice(; gram = diagonal_matrix(U, U, U, E8, E8, k))
end
end

22 changes: 22 additions & 0 deletions test/QuadForm/Quad/ZLattices.jl
Original file line number Diff line number Diff line change
Expand Up @@ -742,3 +742,25 @@ end
L = root_lattice(:D, 5)
@test length(unique!([L,lattice_in_same_ambient_space(L, basis_matrix(L))])) == 1
end

@testset "Hyperkaehler lattices" begin
L = @inferred k3_lattice()
@test is_unimodular(L)

for S in [:K3, :Ab], extended in [true, false]
L = @inferred mukai_lattice(S; extended)
@test is_unimodular(L)
end

L = @inferred hyperkaehler_lattice(:K3; n = 3)
@test det(L) == 4

L = @inferred hyperkaehler_lattice(:Kum; n = 3)
@test det(L) == 8

L = @inferred hyperkaehler_lattice(:OG6)
@test det(L) == -4

L = @inferred hyperkaehler_lattice(:OG10)
@test det(L) == -3
end
Loading