Skip to content

Commit

Permalink
Deployed 233f5f8 with MkDocs version: 1.5.3
Browse files Browse the repository at this point in the history
  • Loading branch information
Unknown committed Feb 2, 2024
1 parent 7d4db86 commit 7a74d76
Show file tree
Hide file tree
Showing 3 changed files with 2 additions and 2 deletions.
2 changes: 1 addition & 1 deletion search/search_index.json

Large diffs are not rendered by default.

Binary file modified sitemap.xml.gz
Binary file not shown.
2 changes: 1 addition & 1 deletion 评估指标/index.html
Original file line number Diff line number Diff line change
Expand Up @@ -691,7 +691,7 @@ <h1 id="_1">评估指标</h1>
<a id="__codelineno-9-4" name="__codelineno-9-4" href="#__codelineno-9-4"></a><span class="n">Out</span><span class="p">[</span><span class="n">X</span><span class="p">]:</span> <span class="mf">0.5</span>
</code></pre></div>
<p>这与我们的计算值相符!</p>
<p>对于一个 "好 "模型来说,精确率和召回值都应该很高。我们看到,在上面的例子中,召回值相当高。但是,精确率却很低!我们的模型产生了大量的误报,但误报较少。在这类问题中,假阴性较少是好事,因为你不想在病人有气胸的情况下却说他们没有气胸。这样做会造成更大的伤害。但我们也有很多假阳性结果,这也不是好事。</p>
<p>对于一个 "好 "模型来说,精确率和召回值都应该很高。我们看到,在上面的例子中,召回值相当高。但是,精确率却很低!我们的模型产生了大量的误报,但漏报较少。在这类问题中,假阴性较少是好事,因为你不想在病人有气胸的情况下却说他们没有气胸。这样做会造成更大的伤害。但我们也有很多假阳性结果,这也不是好事。</p>
<p>大多数模型都会预测一个概率,当我们预测时,通常会将这个阈值选为 0.5。这个阈值并不总是理想的,根据这个阈值,精确率和召回率的值可能会发生很大的变化。如果我们选择的每个阈值都能计算出精确率和召回率,那么我们就可以在这些值之间绘制出曲线图。这幅图或曲线被称为 "精确率-召回率曲线"。</p>
<p>在研究精确率-调用曲线之前,我们先假设有两个列表。</p>
<div class="highlight"><pre><span></span><code><a id="__codelineno-10-1" name="__codelineno-10-1" href="#__codelineno-10-1"></a><span class="n">In</span> <span class="p">[</span><span class="n">X</span><span class="p">]:</span> <span class="n">y_true</span> <span class="o">=</span> <span class="p">[</span><span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span>
Expand Down

0 comments on commit 7a74d76

Please sign in to comment.