This repository is the Pytorch implementation of PRIN (Pointwise Rotation-Invariant Network).
- Install s2cnn (https://github.com/jonas-koehler/s2cnn) and its dependencies (pytorch, cupy, lie_learn, pynvrtc).
- Install pybind11 and compile the script under src (https://pybind11.readthedocs.io/)
- Download ShapeNet 17 Part Segmentation Dataset in h5py format from https://drive.google.com/drive/folders/1wC-DpeRtxuuEvffubWdhwoGXGeW052Vy?usp=sharing
- Download pretrained weights (trained on unrotated shapes) from https://drive.google.com/open?id=1QnFqQdWmx0cYtYeN9tJNlf-E5ZLawRBv
- For training, run "python train.py --log_dir log --model_path ./model.py --num_workers 4"
- For testing, run "python test.py --weight_path ./state.pkl --model_path ./model.py --num_workers 4"
MIT
Our paper is available on https://arxiv.org/abs/1811.09361.
@article{prin,
title={PRIN: Pointwise Rotation-Invariant Network},
author={Yang You and Yujing Lou and Qi Liu and Yu-Wing Tai and Weiming Wang and Lizhuang Ma and Cewu Lu},
journal={arXiv preprint arXiv:1811.09361},
year={2018}
}