Skip to content

zhiyuanpeng/gender-race-api-bert

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

8 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

RaceBERT -- A transformer based model to predict race and ethnicty from names

Installation

pip install racebert

Using a virtual environment is highly recommended! You may need to install pytorch as instructed here: https://pytorch.org/get-started/locally/

Paper

See Here: https://arxiv.org/abs/2112.03807

Usage

raceBERT predicts race (U.S census race) and ethnicity from names.

from racebert import RaceBERT

model = RaceBERT()

# To predict race
model.predict_race("Barack Obama")
>>> {"label": "nh_black", "score": 0.5196923613548279}

The race categories are:

Race Label
Non-hispanic White nh_white
Hispanic hispanic
Non-hispanic Black nh_black
Asian & Pacific Islander api
American Indian & Alaskan Native aian
# Predict ethnicity
model.predict_ethnicty("Arjun Gupta")
>>> {"label": "Asian,IndianSubContinent", "score": 0.9612812399864197}

The ethnicity categories are:

Ethnicity
GreaterEuropean,British
GreaterEuropean,WestEuropean,French
GreaterEuropean,WestEuropean,Italian
GreaterEuropean,WestEuropean,Hispanic
GreaterEuropean,Jewish
GreaterEuropean,EastEuropean
Asian,IndianSubContinent
Asian,GreaterEastAsian,Japanese
GreaterAfrican,Muslim
Asian,GreaterEastAsian,EastAsian
GreaterEuropean,WestEuropean,Nordic
GreaterEuropean,WestEuropean,Germanic
GreaterAfrican,Africans

GPU

If you have a GPU, you can speed up the computation by specifying the CUDA device when you instantiate the model.

from racebert import RaceBERT

model = RaceBERT(device=0)

# predict race in batch
model.predict_race(["Barack Obama", "George Bush"])
>>>
[
        {"label": "nh_black", "score": 0.5196923613548279},
        {"label": "nh_white", "score": 0.8365859389305115}
]
# predict ethnicity in batch
model.predict_ethnicity(["Barack Obama", "George Bush"])

HuggingFace

Alternatively, you can work with the transformers models hosted on the huggingface hub directly.

Please refer to the transformers documentation.

Releases

No releases published

Packages

No packages published

Languages

  • Python 93.7%
  • Shell 6.3%